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Abstract

This is a note based on a course of elementary differential geometry as I gave the lectures in
the NCTU-Yau Journal Club: Interplay of Physics and Geometry at Department of Electrophysics
in National Chiao Tung University (NCTU) in Spring semester 2017. The contents of remarks,
supplements and examples are highlighted in the red, green and blue frame boxes respectively.
The supplements can be omitted at first reading. The basic knowledge of the differential forms
can be found in the lecture notes given by Dr. Sheng-Hong Lai (NCTU) and Prof. Jen-Chi Lee
(NCTU) on the website. The website address of Interplay of Physics and Geometry is http:
//web.it.nctu.edu.tw/~string/journalclub.htmor http://web.it.nctu.
edu.tw/~string/ipg/.
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1 Curve on [E2

We define n-dimensional Euclidean space E" as /
a n-dimensional real space R" equipped a dot f
product defined n-dimensional vector space. /

Tangent vector In 2-dimensional Euclidean / \\&M e
space, an [E? plane, we parametrize a curve / Y " p

p(t) = (z(t),y(t)) by one parameter ¢ with re- /L

spect to a reference point o with a fixed Cartesian f.-’ 0 .

coordinate frame. The velocity vector at point p

is given by p(t) = ((t),y(t)) with the norm Figure 1: A curve.

Pt =P -p=Vi2+32, (1)

*Electronic address: Iwluo@gate.sinica.edu.tw



http://web.it.nctu.edu.tw/~string/journalclub.htm
http://web.it.nctu.edu.tw/~string/journalclub.htm
http://web.it.nctu.edu.tw/~string/ipg/
http://web.it.nctu.edu.tw/~string/ipg/
mailto:lwluo@gate.sinica.edu.tw

where & := dx/dt. The arc length s in the interval [a, b] can be calculated by

o= [as= [T @r= [ vErpa= o @

The arc length can be a function of parameter ¢ given by

t
st = [ pe]ar ®
From the fundamental theorem of calculus, we have
ds : )
Zl#0 = s =1l >0. @)

According to the inverse function theorem, we have t = t(s). One can parametrize the curve by arc
length s as p(s) = (z(s),y(s)). The corresponding velocity vector should be p'(s) = (z/(s), y/(s)),
where we have 2’ := dz/ds. We can rewrite the derivatives of x and y with respect to s as

g do_dzdt .t
ds dtds T ds’

5
o )
y - yds *
Thus, the norm of the velocity vector parametrized by s can be calculated as
dt dt dsdt
/ — 12 12 — 5.2 2 — |lp|l— = —— —= 6

which implies that the velocity vector p’(s) is a unit vector. We can define a unit tangent vector as a
velocity vector parametrized by s

‘TEel = p’(s).‘ (7)

Normal vector Duetoe;-e; =p’-p’ =1, we have

e -ete-ef=0 = e -¢=0 = e Le, (8)

it indicates that €/ is a normal vector. The principle normal vector is defined by

/
1
€|
as a unit normal vector at p(s). The curvature of a curve p(s) is given by x(s) = |e}|(s)| > 0, which
can be realized as a norm of the acceleration vector a := €| = p”. Therefore, we have a relation

N =ey, = ©

e = r(s)ey. (10)

Remark. 1f a vector V' is an unit vector, |V | = 1, the corresponding derivative vector would be
perpendicular to itself, i.e.

V' 1iV. (11)




Osculating plane The plane is spanned by the vectors e; and e, is called osculating plane.
Newton’s second law In classical physics, we have a momentum vector p = mT = mp’ with mass
m. The force F' is defined by Newton’s second law

d aT

F:—p:m—:ma:mp” (12)
ds ds

with respect to parameter s.

Frame A set of vector e, e; equipped with a point p calls frame. In such of case, a frame at p is
denoted by (p; e, e2).

Frenet-Serret formula in 2D  From the orthonormality condition e; - e; = d;; (4,7 = 1, 2), we have

e -e +e-e =0 (13a)
= e -exte-e,=r+e - e =0 (13b)
—> e;-€e,=—r (e, hascomponent — r along e; direction) (13c¢)
= |e, = —Key. (134)

As a result, we have the following relations

p/ = —'—el p/ ]_ 0
e
e = +rey, — el=10 ( 1> (14)
/ ()
€, = —hKe e -k 0

called Frenet-Serret formula.

Example (Circle in E?). A circle with radius r can be parametrized by p(t) = (rcost,rsint)
with 0 < ¢ < 27,

a

P e,

Figure 2: A circle.
The tangent vector is

p(t) = (—rsint,rcost) (15)

with norm

Ip| = \/r2 sin® ¢, 72 cos2t) :=r. (16)




The arc length s(t) is

t t
:/ Ip(t")|dt’ :/ rdt' =rt.
0 0
Therefore, the circumference is

2m 2m
L :/ Ip(t')|dt’ :/ rdt’ = 2nr.
0 0

By t = s/r, the circle p(s) and its tangent vector are

s . s
p(s) = (rcos—,rsm —)

r r

and

p'(s) = <— sinf,cos§> =e =T

T r

r r T r

1 1
e\ (s) = (— ~cos 2, ——sin§> :

The curvature s can be obtained by

58 1
K=&} = —cos —sm—:;,

which is the inverse of the constant radius . The normal vector can be calculated by

(A 1 s 1 . s s .S
e=—-=r| ——cos———sin—- | = —cos—,sin— | .
A r ror r r r

Gauss map Gauss map G is a mapping which
globally send all the points p of curve to a unit
circle S* (a Gauss circle) centered at ¢ and send
the corresponding normal vector e, to a radius
vector from ¢ pointing to S*, which is shown
as Fig. 3. Therefore, e, can be represented as
a point on S*.

Let’s consider two normal vectors e;(s) and
e;(s’) with respect to two infinitesimal points

p(s) and p(s’), where s’ = s + As is infinitesi- Figure 3: The Gauss map G.
mal close to s. We can expand ey (') at s:
ex(s’) = ex(s + As)
~ ey(s) + e(s)As
= ex(s) + (—r(s)er(s))As
= ex(s) + (—r(s)As)ei(s),

(17)

(18)

(19a)

(19b)

(20)

21)

(22)

ez(b',) C:{\]

(23)



which is the parametrization of a point under the Gauss map. Thus, we know the distance between
two infinitesimal point e,(s) and e (s’) on Gauss circle given by

|e2(s") — ex(s)| = [Aey| = K(s)As. (24)
And we also have
Ap =p(s') —p(s) = (p(s) + P'(5)As) —p(s) =p'(s)As = |p(s') —p(s)| = |[Ap| = As.
(25)
Therefore, in the local region, the ratio of the length between two points on the Gauss circle and curve,
i.e., |Aey|/|Ap| can be calculate by
lea(s’) — ea(s)| _ |Aes| _ k(s)As
Ip(s') —p(s)|  |Ap| As
which measure the curvature of a curve, x(s), at the neighborhood of a local point p.

According to the example of circle, we assume a vector ¢ = p+res = p+(1/x)e,. The derivative
of qis

— K(s). (26)

1 1
q=p+ Eeé =e + E(_Hel) =0, (27)

which means that q is fixed, i.e., q is the center of the osculating circle with radius 1/x. By considering
the Gauss map of a circle. The radius vector should be e, and the center ¢ of Gauss circle corresponds
to the point q of the osculating circle which is the circle itself. Thus, the Gauss circle can be imaged
by rescaling the radius of osculating circle to unity.

Example (Curvature of ellipse). An ellipse is described by p(t) = (z(t),y(t)) with the
parametrization of the coordinates z(¢) = acost and y(t) = bsint (a > b > 0), i.e.,

2 2

—i—y =cos?t+sin’t =1. (28)
az ' b

Figure 4: An ellipse.
The tangent vector is

p(t) = (— asint,beost) (29)
By changing the parameter to s, we have to calculate ds/dt first:

ds B
dt

it 1

|p|—\/a2sm t+b2cos?t — @— = — .
ds \/@2 sin“t + b2 cos?t S

(30)

Therefore, the tangent vector parametrized by s is obtained by
dp dt
o
TP T s

B ( —asint becost ) B (—asint bcost) 31)
Vazsin?t + b2 cos2t \/a?sin?t + b2 cos? ¢ § 8 ’




Subsequently, we have

o — (—bc'ost’—a'sint). (32)
S S
However
de1 de1 dt
e N B
e, = I T ds Kes . (33)
As a result, the curvature is
b
K(t) = - (34)

(a2 sin®t + b2 cos2t)3/2

If we consider the particular case of a = b, an ellipse reduce to a circle with curvature k = 1/a.

2 Curvein E?

In %, a curve is parametrized as p(¢f) = (z(t),y(t), z(¢)) and we have to look for an orthonormal
frame at p denoted by (p; ey, e2, e3) The vector e; = p’ is uniquely defined by the same way. Due
to ) L ey, vector €| should be proportional to e, or e3. Now we can fix €] = xe; as the previous
section.

Binormal vector Now we define a unit vector orthogonal to T" and IN called binormal vector

B:=TANN
=e;Ney = €3, (35)

where A is the exterior product or wedge product.

Remark. In 3-dimensional space, the exterior product A is the same to the usual cross product x
of two vectors.

By orthonormality condition e; - €; = §;; (4,7 = 1,2, 3), we have
e -e+e-e =0, (36)

which implies:
(i) If i = j, we have €} L e;, €}, should be the combination of e; and e.
(i1) If ¢ # 7, we have

O0=¢€j-ext+e -e = (key)-exte -e,=r+e-e (I=17=2), (37a)
O=¢ej-e3+e -e;=(key) e3+e -e;=0+e-€e (i=17=3). (37b)

Therefore, with the result (37a), we have to assume that

e, = —r(s)e; + 7(s)es. (38)

By comparing to (13d), it contains an additional term related to es. For ¢ = 2, j = 3, we obtain

O=e,-e3+ey-e; = (—re +7e3) -e3+ex-€ =T7+ey-e€;. (39)



Due to (i) and (37b), e should be perpendicular to e, and e3. As aresult, we obtain the unique solution
that

e; = —Tey, (40)

where 7(s) is called forsion of a curve p(s). The geometric meaning of torsion is that it make the
point of the curve leave for the osculating plane spanned by e; and es.

Remark. Apparently, the torsion of a curve is always related to the binormal vector B = es.

Frenet-Serret formula in 3D As a result, we have Frenet-Serret formula:

p/ = +e; p/ 1 0 0
e = + ke €] 0 k10 o
, ’ — = o e | . (41)
e2 = _I‘{/el +Te3 62 —K [) T ,,é,,,
€ = —Tey A 0 —710 ’
Remark. 1f one defines B := IN A T', then one should assume e}, = —r(s)e; — 7(s)es and obtain

e, = +7e,.
Parametrization of a curve in a neighborhood of s,  One can do the Taylor expansion of p(s) at s.

* First order:
p(s) =~ p(so) + - (s —s0) = P(s0) + €1(s0)(s — s0) - (42)

» Second order:

B(s) = Plso) + B'(s0)(s — 0) + B (s0)(s — 0

1
= p(so) + e1(s0)(s — so) + 5%(80)82(80)(8 — 30)2 ) (43)
e Third order:
1 1
p(s) = p(so) + ' (s0)(s — s0) + =P"(s0)(s — s0)> + = p""(50) (s — 50)°
21 3 ——
p"'=(p") =r'ea+re,=r"es+r(—re1+Te3)

1

= p(s0) + e1(s0)(s — s0) + §m(so)e2(50)(s — 50)?

1

+ 6( — /432(80)61 (So) + /43/(80)62(80) + F(SQ)T(So)eg(SQ)j) (S — 80)3 . (44)

leadir;g term
We only consider the leading term in the third order expansion, then we have

P(s) ~ p(so) +ei1(so)(s — s0) + 1"ﬁ(S)ez((‘So)(S —s0)% + 1(’f(SO)T(So)*33(30)) (s —s0)°.

2 6
(45)



Example (Helix in E®). A helix is parametrized as p = (z(t), y(y), 2(t)) with

z(t) = acost,
y(t) = asint, (46)
z(t) = bt.

The tangent vector and the corresponding norm are

p= (&9 2) = (—asint,acost,b) 47)
and
| = Va2sin®t + a2cos?t + b2 = Va2 + b2 = 5. (48)

The relation of s and ¢ can be obtained by

td s
s(t):/od_;dt’:/oVa2+b2dt’::ct — t=2. (49)

Figure S: A helix.

Subsequently, we have tangent vector

) b
e, =p = (—gsmf,gcosf,—) (50)
c cc ¢’ c
and
e=p"'=| - 2 cos f7_ﬁ sinf,O : (51)
c? ¢ 2 1
So the curvature is
k=le=2=_2 (52)

and the normal vector can be obtained by

s . s
e, =rey = e = (— Ccos —, —sm—,O) . (53)
c c



Finally, we have binormal vector

b . b
es=¢e;/\ey = (—mnf,——cosf,g) . (54)
c ¢ c ¢ c
Due to
b s b . s
e; = (0_2 cos -, — sin E’O) , (55)

we can calculate the torsion of p(s) form (40):

3 Surface theory in E°

We consider a 2-dimensional surface M in E3, we parametrize the surface by two variables u and v
written as p(u, v) = (z(u,v),y(u, v), 2(u,v)).

Remark. If the point p(u,v) moves along u direction, i.e., parametrized by u only, we call the
trajectory u-curve. The infinitesimal vector along u is

op(u,v)
ou

Similarly, we have v-curve along v direction and

Ap|, =~ p,Av. (58)
Therefore, we have
Ap ~ p,Au+p,Av. (59)
Tangent vector The differential of p is
dp = (dz, dy, dz) (60)
with
(
dr = @du + a—xdv = x,du + z,dv,
ou ov
0 0
dy = Y au+ P av = yudu + yodv, (61)
ou ov
dz = %du + %dv = z,du + z,dv

\ ou ov

where z,, :== Ox/0u. Therefore, we can write dp
as
op

dp = a—pdu + —dv :=p,du+p,dv, (62)
ou v

Figure 6: A surface.



where

{pu = (Tus Yus 2u) 63)
P, = (%0, Yo, 20)
are called velocity vectors along v and v respectively.
Remark. The vector p in E? in the Cartesian coordinate system can be written as
p=zit+yj+zk:=2%, (a=1,2,3), (64)
where {4, } is a fixed reference frame of E*. So that we have differential
dp = (dz®)d, + x%(dd,) - (65)
Because 9, is fixed, i.e. dd, = 0, it leads to the differential of p
dp = (dz*)o, = (dx,dy,dz) . (66)
The general situation for non-fixed frame in space M"™ will be discussed in the Sec. 4 of moving
frame.

Tangent space We call a space spanned by p,, and p,, at point p a tangent space denoted by 7, M.

Supplement (Tangent bundle). In tangent space with dimension 2, a vector V' has a generalized
coordinate transformation GL(2; R), which is u' = @'(u) and gives the transformation for vector

V =Vp,=Vp,. (67a)

The transformation of the basis and components are given by

o
p;(u) = %pz(u) (Pushforward) , (67b)
Vi (u) =V’ () 577 (Pullback) , (67¢)
where
;o
W)’ = 5= (68)

is an element of the Jacobian matrix J of the general linear transformation GL(2; R). The map
pushforward (pullback) means that the covariant (contravariant) quantities expressed in new (old)
coordinate system under the generalized coordinate transformation from old (new) coordinate
system.

We can collect all pairs of the points p on M and their corresponding tangent space 7, M. A
tangent bundle T)M is defined by the collection of T, M, i.e.,

™= ] oM. (69)
peEM

A tangent bundle TM is a vector bundle denoted by (E, M, ), which is a special fibre bundle
with

10



* base space B: M,
* standard (typical) fibre I over p (an object defined at p): T, M;
* total space E: a collection of all T, M;

* bundle projection m (an element u of bundle is projected by the fibre to the corresponding
point p): w(u) = p foru € TM;

o structure group G: GL(2; R);
* transition function t';: Jacobian matrix J of GL(2;R),

and we call E, = 7~ !(p) the fibre of E over point p.

First fundamental (quadratic) form we define

I:=dp-dp (70a)
=p, - p,dudu+2 p, - p, dudv +p, - p, dvdv
SN——— S~—— S——
E F G
= Fdudu + 2F dudv + G dudv (70b)
E F\ (du
= (du dv) (F G) (dv) . (70¢)

called the first fundamental form or metric tensor of surface M, which is a symmetric quadratic form
rather than an exterior 2-form.

Remark. In the case of F' = 0, the first fundamental form is

I = F dudu + G dvdv (71a)

= (du dv) <]§ g) (ZZ‘) . (71b)

In such case, we call (u,v) an isothermal coordinates if E = G. Therefore, the component of
metric is

gij=FEéd; with E=p,-p,=|p,]> >0, (72)

and we say that g,; is conformally equivalent to 9;;, which preserved the angle between any two
vectors. Because d;; gives the flat space, we say that g;; is conformally flat.

We consider a curve on the surface, that means « and v should be parametrized by one variable ¢,
i.e.,u=u(t) and v = v(t). The curve p(t) = p(u(t), v(t)). The tangent vector is obtained by

. Opdu Opdv . ,
S il ek 73
P=o.a T avar PP (73)
and the corresponding norm is
p| = VEU? + 2Fud + Gi?. (74)

11



We would like to calculate the arc length of a curve by

3:/d3:/|p|dt (75)
= / VEdu? + 2Fdudv + Gdv® (76)
Vis?
= / VEu? 4+ 2Fuv' 4+ Gu ds = / p’| ds. (77)
1
Therefore, we have
p'|=1. (78)
We would alwalys write the first fundamental form with u = «!' and v = u? as
1=ds’ =g =g du'd (i,j=1,2), (79)
where
E F
9ij = P; - P; — (F G) (80)

is the metric tensor represented as a 2 X 2 matrix on the surface M. The inverse of g;; is defined by

gkigij = 5;? .

(81)

Remark. The first fundamental form describes the distance of two points on the surface M, which
gives the intrinsic structure of M.

Supplement (Induced metric). We can regard p as a set of functions defined on the surface M,
the differential of p is actually an infinitesimal tangent vector laid on M

_Jp op, 0 0 B 5
dp = 8udu + % dv = (duau I dvau)p = (du'0;)p, (82)

which can be identified as differential operator du'0; act on a set of functions p. In abbreviated
notation, we have

dp = du'd; = du' ® 0; :=9 (p; — ), (83)

where we use 0; to abbreviate the basis vector p, = 9;p, i.e., the vector 0; should be regarded as a
differential operator act on some functions. Here we call vy = dp the canonical I-form or soldering
form, which is a vector-valued I1-form (1-form carries a vector). For any vector V. = V*9; on
M, we apply ¥ on V' and obtain

I(V) = VFdu'(0,)0; = VF6.0, = Vi, = V. (84)

It is apparent that ¢} is an identity map for a vector.

12



Now we will define the general inner product for two basis vectors d; and J; instead of dot
product as

g(ai, aj) = Gij - (85)

Therefore, for any two vectors V' = V'0; and W = W79, on M, we have

g(V. W) = g(V'0;, W'9;) = V'Wig(8;,0;) = V'Wgy = ;W = V'W;.  (86)

In general we also have

g(aaa ab) = gabv (87)
where
= -2 (ab=1,23) (88)
a - 3:L‘“ CL, - )~ .

We call {z*} the Gauss normal coordinates or synchronous coordinates if g;3 = 0 and gs3 = 1,
i.e., O3 1s an unit normal vector of M, which is proportional to n.
Furthermore, we can define a metric tensor

G = Japdzda’ = 6pdar®da® = ds? (89)

as a line inteval of E3, and it is clear that g;3 is one of the component of g. If we assume that

a' =z = z(u,v),2? = y = y(u,v) and 2> = z = z(u,v) on M. We have basis vectors -
spanned by aia as
9 w0 o 920 _or o
Ou  Oudr  Oudy Oudz  Ou dx*’ . g 0x* 0 ha. o) 90)
0 0rd 9yod 020 0« 9 out  Ouidxe T 'Oz’

5o Gube | Guty ' Bodr  ©9Be’

where h%; is a projection operator of the vector in E® and 4, j = 1,2. The component of metric
tensor g of M can be given by

o 0 .. 0 0 wip (O O o 1b —
9ij =9 (@7 %) =7 (h i’ hbj@) = h*:h’; g <%, @) = h*h% Ga, (1)
which is the projection of g,;, of E® onto M. We can define an projection operation P of differential
dx® in IE? onto M which is called the pullback (a map for contravariant quantities) of 1-form dz®:
_ Ozx°
- Oul

i.e., P(dz") can be spanned by du’ on M. As a consequence, a line inteval ds?|, = P(7) on M
is obtained by

P(7) = P(gupdzdz’) = Gup(h:h%;du'dw’) = (Gaph®:h';)du'du = gdu'dw’ = g =1. (93)

P(dx?) du' = h%;du’ (92)

Therefore, the first fundamental form I = g = ds of M can be regarded as a projection of

metric tensor g with

|

ox® Oxb
i 1= Japh%h’; = Jopo— o . 94

We called that g is a induced metric obtained by the pullback of g.

13



Supplement (Interior product). We define an anti-derivation on exterior differential p-forms w for
a vector X called interior product with respect to X. It sends an exterior p-form to an exterior
(p — 1)-form. We consider an 1-forms w, the interior product of w with respect to a vector X is

txw = X |w = w(X) (95a)
= sz]duj(al) = Xleéf = ij]‘ o (95b)

Therefore, we have
Lo, (du?) = du? (9;) = &7 . (96)

We note that:
* For 0-form f (a scalar), the interior product is vanished ¢ x f = 0 because of no (—1)-form.

« The second action of 1% = 0. It can be shown that by considering an exterior 3-form w =
(1/3Nwijrdu’ A du? A duF, we have vanished second interior product by X

1 . .
L%Cw =ixlx <§wijkdu‘ A du? N duk)

1 . .
= 1x <§kaijk <du’(8l)du3 A dul

+ (=D du’ A du? (8)du® + (—1)%du’ A dujduk(f)l)))

1 . ) . .
= ix| =X! (wljkdu] A du® — wiy dut A du® + wiji du' A duj>
3! N~~~ ~—~

—Wiik +w”j

1 .
=1x (EXlwljkdu] A duk)

— xmx! (%wljk (duj(é?m)duk + (—1)1dujduk(8m)>>

symmetric in [,m

1 ] —N—
= xXmx! (ﬁwlmkduk — Wijm duf) = X" X' Wi duF = 0. (97)
—Wimj anti-symmetric in [,m

However, tytx # 0, e.g. the interior product of an exterior 3-form w by X and Y should
be an 1-form Y™ X wy,,,duf # 0.

Supplement (Isomorphism between tangent and cotangent space). The 1-form du’ is defined on
the cotangent space which is dual to the basis % = 0, on the tangent space. We can define a linear

map ¢ : TM — T*M. For vectors X, Y € TM and o € T"M the 1-form corresponding to
vector X, then we define

(,Y) =a(Y)=1wya=g(X,Y), (98)

where the (e, @) with two slots is a kind of inner product defined between the tangent and cotangent
space and

a:=yY(X). (99)
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Therefore, we can also write the corresponding 1-form « as

afe) = g(X,e), (100)
which can be recognized by
1 . . oo
Q= S0y (du'(X)dw’ + du'd’ (X))
1 k(71,0 ‘ i3
— §gin (du (O )du’ + du duj(ﬁk))
1 ) ) L
= X;du' . (101)

By choosing vector X = 9;, we have an 1-form ¢)(9;) = 1);;du’, which leads to
gi; = 9(8:,8;) = (W(8:), 0;) = Yar {duP, 85) = YixdF = ;. (102)

Therefore, we have

called the reciprocal basis of du’ in T*M. 1t is apparent that g;; transforms du’ to its reciprocal
basis du;.
In addition, we have a linear inverse map ¢~! : T*M — TM such that

X = ¢y7(a) = p(a). (104)

For o = du’, the inverse map of du’ can be written as ¢! (du’) = ¢ 9;. If we take o = du’ and
Y = 0; in (98), then

8 = du'(9;) = 9(6™0k, 0;) = ©*g(0k, 0;) = ©* s , (105)

therefore, p™* = ¢g** and

Y (du') = gijaj =0 (106)

is the reciprocal basis of 0;. We assume that 5 = 1 (Y") and define the inner product in 7*M
which is also denoted by g

9(a, B) == g(v (), v (8)). (107)

The definition leads to the following relation by choosing o = du’ and 3 = du’
g(du',du?) = g (¢~ (du'), v (dw?)) = g(0", &) = g™ ¢"'g(Ok, 1) = g” . (108)

Now we can clearly express a vector X = X'0; as an inverse map )~ ! of an 1-form o with
the help of (106):

X = X0 = X'g;;0 = X;00 = X0~ N dw!) =~ X;dw! ) = ¢ (a). (109)
a vector! an 1-form!

As aresult, we conclude that the metric tensor g (not component g;; or g*/) turns a vector (1-form)
into a 1-form (vector). The component of metric tensor g/ (g;;) transforms the a vector 9; (1-form
du?) to its corresponding reciprocal basis 9 (du;).
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Normal vector of the surface We would like to look for an orthonormal frame (p; ey, e, e3) of M.
Under the Gram-Schmit procedure, we can define

p
e = —L (110)
P.|
and
p, — (p, - e1)er
ey = —U v . (111)
? p, — (p, - e1)ei]

Therefore, we have

le3 =€ Aeyi=n, (112)
which is an unit normal vector of M.
The unit normal vector n = n(u, v) can also be obtained by
A\
n(u,v) = PuPu (113)
P, A Pyl
The corresponding differential dn is
0 0
dn = Lau+ v = nydu + nydv. (114)
ou ov

However, we have:
()n L p, = n-p, =0, which have the equations of the partial derivative with respect to u and
v are

o,:n,-p,+n-p,, =0 = n-p,=-n,-p,:=17L, (115a)
o :n,-p,+n-p, =0 =  n-p,,=-n,-p,: =M. (115b)
(i)n L p, = n-p, =0, we obtain

=

Py = Ny - P, = M, (1163.)

811:n71,'pv+n'pvu:0 —
“Ppp = —Ny-Pp, = N. (116b)

azr:n’v'pv—i_n'pvv:o -

=

Second fundamental (quadratic) form According to (62) and (114), we can define a quadratic
form

Il :== —dp-dn (117a)
= —(p,du + p,dv)(n,du + n,dv)
= —(p, - n, dudu + p,, - n, dudv + p,, - n, dudv + p,, - n, dvdv)
=n-p,, dudu+n-p,, dudv+n-p, dudv+n-p, dvdv
—— ~—— —— ——

L M M N

= Ldudu + 2M dudv + N dudv (117b)
L M)\ (du

= (du dv) (M N) (dv) (117¢)

called the second fundamental form of M. We define the second fundamental form as a tensor given
by

Il = b;;du’du’ (118)
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with the component of matrix form as

L M
bij:n'pij:_pi'njH(M N)' (119)

Remark. The second fundamental form describes the shape of M and how the surface M embed-
ded in E3. It is an extrinsic property of M and we call the component b;; the extrinsic curvature.

Now we would like to discuss decomposition formulas of the derivative vector of frame (p; p,,. p,, n).
We follow the principle:

* Any vector in the space can be spanned by the basis p,,, p,, and n.

Gauss formulas We take the partial derivative of p,, and p, with respect to v and v:

( 0

Py = apu = (Fu)uu p, + (Fu)vu p, + (FU)nu n
= (FU)uu p, + (Fu)vu p, + (puu ) n)na (120a)
——
L
a u v n
| Epu = (FU) v Py + (FU) v Py + (FU) v
= (FU)uv p, + (Fu)vv p, + (puv : n)“? (120b)
——’
M
a u v n
p'uu = %pv = (Fv) upu + (FU) u pv + (Fv) u
= (Fv)uu pu + (FU)UU p'u + (pvu ’ n>n7 (IZOC)
——
M
a u v n
Povi= oo, = (0B, + (T)Fp, + (T
=Ty p, + ()% p, + (P, -M)N. (120d)
N
\

We call these set of equations the Gauss formulas. We identify the coefficients

(Fa,)cb = FC(/I,ba (121)

e.g., (Tn)% = I'l,,, then Gauss formulas (120) can be written as

Py ="y + T =Ty +byn i,k =1,2), (122)

where the coefficients are obtained by

Trij = Tlijgie = TPy Py = Piy - Py (123)
——
pi]-fb,‘jn
and

We note that I'y;; and b;; are symmetric int, j.
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dp = (duié’i)p = du’ p;

and

Remark. The vectors dp and dp, in terms of the differential form are given by

dp, = d(0;p) = du’ (9,0,p) = du’ (I"*;;p,, + byn) := *;p, +bn =T"p, +T"n

Weingarten formulas Dueton-n = 1, we have
O,:n,-n=0 — n, Ln,
Oy,:n,-n=0 =— n,Ln.

Therefore, n,, and n, do not contain the component of n. We can assume that

{nu - APu + pr = (Fn)qu P. + (F“)Z P>
n, = Cpu + Dpv = (Fn)g pu + (Fn)g pv ’

(125)

(126)

respectively, where T'*; := I'*;;du/ is called connection form and b; := b;;du’ = I'™;;du/ = T™;.

(127a)
(127b)

(128a)
(128b)

which is called the Weingarten formulas. We calculate the inner product of n,, - p,, and n,, - p,:

n,-p,=—L=FA+FB FM —GL FL—-EM
“ A= —— d |[B=————. 129
{nu-pv:—M:FA—i—GB BG—F2 | ™ vG—p | (1P
Similarly, we have
FN —-GM FM — EN
= D="—"—". 130
“=pa—p | ™ EG — F? (130)
The Weingarten formulas (128) can be written by
n; =I"p,, (131)
where the coefficients can be calculated by
—bij =p;-n; =p; - (T'apy) = gul'n; =Tiny = |TFa; = ¢"Tin = —g"bsj = =" .
(132)
As a result, we obtain
n; = —b"p,. (133)
Remark. The Weingarten formula written in the differential form is given by
dn = (—b";du’)p, = —b*p, := I'"up, (134)
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Acceleration (curvature) vector We have an acceleration (curvature) vector p”(s) parametrized
by s, which can be decomposed by tangential and normal parts

P’ =p; +p, =Ky + K, (135)

where the tangential part kK, = k4t and normal part k,, = ,n are called geodesic curvature and
normal curvature respectively.

Remark. We can identify p” := a the acceleration vector, therefore, (135) can be read as a =
ar + ay with the tangent acceleration vector ar := p; and normal acceleration vector ay := p...

According to (11), we have p” - p’ = 0. We would like to discuss the geodesic curvature, we take
the inner product of p; with n and p’ respectively:

p;/ n:=0, " o /
p//_p/ ._ (p”—i—p")'p/—p"-p/—o = p, xt:=nAp, (136)
t T t n - - )

then we can have p; = k,t = k,(n A p’).

Normal curvature of a curve We would like to discuss normal curvature first, and define x,, =
KnpNl, SO

kn=K, n=(p"—kK,) - n=p" -n—K,-n. (137)
——
0
However we also have
p/'n:O _— p”.n_|_p/.n/:()_ (138)

Therefore, x,, can be calculated by

Ky = _p/ .0
= —(p,v’ +p,V) - (n’ + nyv')
= Lu'v +2Mu'v' + NV . (139)

However p’ = dp/ds and n’ = dn/ds, which leads to

~dp dn  —dp-dn 10
s ds  de 1 (140)

Remark. We have the norm of tangent vector
1= |p'| = Eu'v' + 2Fu/v' + Gu'v' = R (141)
According to (83)
d du’ ,
P =% = Z20 = ul'g, (142)
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we have
I(p',p') = gudu*du'(p', p’)
= gu''v! /duk(ai) dul(aj)
= gu'’u’ /55(%
= gijui/uj/ (1433)
= Bu'u' + 2Fu'v + GV = 1. (143b)
Similarly,
I(p’,p') = biju’'v’’ (144a)
= Lu'v +2Mu'v' + NV =&k, . (144b)
We finally obtain
II / /
o = SPLP) _ ). (145)
I(p/, p')

We assume that x,, has value of A\, which gives the relation
II =M. (146)

One can divide (146) by ds? and then obtain

11 I
i )\ﬁ = Luv +2Mu'v + No'v' = AEu'd + 2Fu'v' + Gu'v') (147)
s s

where A can be recognized as the Lagrangian multiplier with constraint Fu'u' + 2Fu/v" + Gv'v' = 1.
By looking for the extrema \ of x,, = II/ds?, we take the partial derivative of (147) with respect to
u*’, which leads to the equation of matrix form

L M\ (u E F\ (u L—AE M—\F\ (u
(M N) (v)IA(F G) (v) - (M—)\F N—)\G) (U,):o, (148)

which means

We have to look for the non-trivial solutions, i.e.,

det(bij — )\gw) = 0,
— (BEG—F*)X* - (EN+GL—2FM)\+ LN —M?=0,

— g\ — (EN+GL—-2FM)A+b=0, (150)
where we define
g = det(g;;) = EG — F?, (151a)
b := det(b;;) = LN — M*. (151b)
As a result, we have the sum and product of two solutions A\; and A,
EN+GL—-2FM b
Mot Ay = o and Ay — = (152)
g g
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Gauss curvature We define the Gauss curvature (or called total curvature) as product of two cur-

vatures:

b
KI:A1>\2:—.
g

(153)

Mean curvature The mean curvature is defined by the mean value of sum of two curvatures:

EN +GL —-2FM
2g ’

1
H = 5()\1 + /\2) =

/
«

called the principal direction.

A cylindrical surface need to have a constraint with

de\?>  (dy\® .
— — = =1.
(@) ~ (@) ===+

Figure 7: A cylinder.
A cylinder is parametrized by

p(u,v) = (z(uv),y(v),v) = dp=p,du+p,dv= (2'du,y'du,dv),
where

= («'du,y'du,0
{pu A P, AP, = (¥, —2,0).

p, = (0,0,1).

and the normal vector is

:pu/\pv _ 1 (/ /0)

/ /
- y by = y 70
P ARl yZHa? T h=40)
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Example (Cylindrical surface in E®). A surface parallel with z-axis can be described by

p=(z,9,2) = (z(v),y(v),v) = dp= (dz,dy,dz) = (2'du,y'du,dv).

(154)

Remark. The value A, (o = 1,2) is called the principal curvature of x,. By substituting A,
into the equation (149), the corresponding solution of vector p(,, = u{ \p; or dp,) = duza)p ;18

(155)

(156)

(157)

(158)

(159)



and

dn = n,du + n,dv = (y"du, —z"du,0) . (160)
with
(o
e 1)
Then we have first fundamental form
I=dp-dp= (2% +y?)du’ + dv* = du® + dv*, (162)
where
E=G=1, F=0. (163)

The second fundamental form can be obtained by

II=—dp-dn
= —(p, - Ny dudu + p,, - n, dudv + p, - n, dudv +p, - n, dvdv)
0 0 0
_ (x/y// _ y/x”) du>
— (y’x” . x’y”)du2 7 (164)
where
L=y2"—2'y', M=N=0. (165)
So we have
g=1, b=0, EN+GL-2FM=y'z" —2'y". (166)
As a result, we obtain
Gauss curvature: K = A\ Ay =0, (167)
1 1
mean curvature: H = 5()\1 + X)) = §(y’x” —z'y"). (168)

We can solve the above equations to obtain

A =0, and X =9'2" —2'y". (169)

Geodesic equations The tangent vector parametrized by s is

p'(s) =pu’’, (170)
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it leads to the acceleration vector is given by
/0l

p// — piu 4 piui//
= (Fkijpk + bz‘j“) u''u!! + Pz’“i !

= (u*" 4+ T """ )py, + biju''v’'n (171)
=p/+p, (172)
=Kg+ Ky, (173)

where we have used p} = p,;(du’ /ds) = (I*;;p + bi;n)u’’. Now we call the curve p(s) geodesic if
p’ = p! = K, i.e., the tangential part is vanished

Ky = p;/ _ (uk// + Fkijui'uj/)pk — 0, (174)

which means that

p only has the normal curvature k,,. ‘

Because p,s are linear independent, we obtain

"+ TFut ! =0, (175)

which is called geodesic equations.

Supplement (Connection and geodesic). We have differential of p’ given by

dp’ = dp,u’’ + p,du’
= (T*;p), + bin)u"’ + p,du’’
= (du"’ +T"u'")p;, + bju''n, (176)
i.e., the symbol d is a total or absolute differential with respect to frame (p; p,, p,, n) on E?. The
total or absolute differentiation means that we have to differentiate not only the component u*’ but
also the basis p, of a vector p’. We assume that p’ can be written as

p=u'0,:=Vo,=V. (177)

Then (176) can be written as

dV = (dV* +T* V") + b;V'n. (178)

and the geodesic equation becomes as

(@v*+T*%V") 0 = 0. (179)

We define the connection D = du' ® D, on M, which act on the function V? and basis 0, are

DVi=dV'=dw ®8;V", (180a)
DO; =T*, ® 8, = du? ® T*,;0;, (180b)

respectively. We note that D act on a function as a differential d on a function. The connection
act on a vector is given by

DV = (DV)®8;+ V' (D8;) =dV' ® 9, + VT* @ 9y = (dV* +T*,V’) ® 9 .| (181)

(DV)k
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The resulting geodesic equation (179) can be read as

(182)

Therefore, (178) can also written as

dV =dVT +dV+ = DV +b;V'n, (183)

where T is the orthogonal projection onto the space spanned by {J;} and | means the normal
component. If there is no normal space M~ of M, the differential

(184)

would be the total or absolute differential of a vector V' on surface M. We can multiply 1/du’ to
the DV:

1 1 .
A = W(dvk + 5V 0y
_ %(dvk + T*ydul V)0
du'
= (g;V*+T*%, =77 ) Ok

l
67’

= (V,V*) 0y, (185)
where we define the component
(DV) } =V, VE =V, V=0,V + T,V (186)
component of V'

called the covariant derivative of vector V* in 0; direction. We note that the covariant derivatives
V; act on the component of vector V¥ only.
It can also be recognized as a vector-valued 1-form DV act on a vector 0;

DV (3;) = ((DV) *da' © 8,) (9;) = (DV),* da'(8;) @0 = (DV) 6. (187)
——

5

Now we will return to the discussion of the tangential part of acceleration (curvature) vector

ar:=n' = dv T._z_l du’ 1 (185)
=P = ds  ds ds du’

o —DV = ——DV =" VI (V;V¥)0 := afd,, (188)

which is the orthogonal projection of the acceleration vector p” onto the space spanned by {0y }.
As a result, we have tangential acceleration with component

av = VIiv,vk (189)

where

VIV; = VIV, = Vig, = V. (190)
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So we can also write a¥ as

ak =V V¥, (191)

which is called the covariant derivative of V¥ along the direction of V. Then, we call

ak=WVyV*=0| or (192)

the parallel transport of tangent vector V', which is equivalent to the geodesic equation.

Remark. We would like to remind you the notation of the covariant dereivative in mathematics
and physics. Consider a vector V/, the covariant dereivative (connection) (D or D;) of a full vector

~—~—
&
(193)
We note that here D;V* = 9,;V' = V! and D;0; = 9yI'*;; as shown in (180). In physics, we

always consider a vector represented by its component V', the covariant dereivative (V;) of a
vector V' should be

V;Vi=(DV) =V + VT = V. (194)

i
J

Christoffel symbols According to (123), we can calculate the coefficients I';;;. Now we would
like to derive the coefficients in terms of g;;, the components of first fundamental form I. We take the
partial derivative of g;;with respect to u* and then interchange the indices of the equations. Therefore,

we obtain )
0
urdia = Pi Py P P = Ljir + Dijie (195a)
0
0uigjk = D'gji + Dji s (195b)
\ 90 = Digj + Dhij - (195¢)

deriavative of g;;

Remark. Equations of (195) gives the metric compatibility, which can be written as the covarinat

ngij = 8kgij — Flikglj — Fljkgli =0. (196)

We can define the non-metricity

ka‘j = —ngij (197)

and (196) would be equivalent to the vanished non-metricity ()x;; = 0.
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According to (344), which will be shown later that p, # O;p in general, we have general case
that

0 # Pij —Pj; = (Djpi + bijn) - (Dipj + bjin) = (Fkij - iji)l)k + (bij - bj')n- (198)

However, in (120), we have p;; = 9;p; = 0;0;p due to the globally fixed frame in [E3, which will
be explained in the Sec. 4 by the reduction condition (345). Consequently, if we have

Ik =Tk, (199a)

pz] p]l { bl] = b]27 (199b)

which give the symmetric condition (torsion-free) for I'*;; and b;;.

By computing (195¢)+(195b)—(195a), we obtain coefficients

1/ 0 0 0
Diij = 5 (%gkz + 909+~ %gzj) (200)
and
1 0 0 0
ko _ klp w9 o - J
Iy =9"Tu; = 29 (aujgzz + auig]l aulgzj) . (201)

Remark. According to (180b), the I'*;; is also called the connection coefficients, or simply the
connection. Due to metric compatibility (196) and torsion-free (304a), the connection (200) or
(201) 1s a function of the metric tensor g;;, we also call this kind of connection the Levi-Civita
connection or Riemannian connection. The Levi-Civita connection can also be denoted as

s (g) = [z’j, k] , (202a)
I*;(9) = {5}, (202b)

which are called the Christoffel symbol of first and second kind respectively, in order to distinguish
the general connections.

Supplement (Torsion tensor). For general metric compatible connection, we always do not have
the symmetric property, i.e., ['*;; # T'*;;. The connection would contain the symmetric and anti-
symmetric parts, which is shown as

1 1
It = §(sz‘j +T%5) + §(sz‘j —T*;)
——— ——
symmetric in ¢,5 anti-symmetric in 7,5
=¥ + T - (203)
We define the forsion tensor
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as the anti-symmetric part of the connection. We have to note that I'* ) 7 { Z’;} The general
connection can be decomposed as

Iy ={L} + K*;, (205)

and it leads to the relation

71 = i — i (200)

where K*,; is called the contorsion tensor. By permutatiing the indices of (206), it can be show
that the contorsion K*;; can be in terms of torsion tensor 7%;; as

symmetric in ¢,j

1 . A 1 , ,
Kk:ij = _§(Tkij D — Ta,ﬂ.) - _5(&+sz]€ + T]ik) (207)

anti-symmetric in ¢,5

or

symmetric in 4,5

y j

K= —= ( T*; =T — T, ) (in pseudo-Riemannian geometry) |. (208)
~~

anti-symmetric in ¢,j

So the torsion 2-form can be written as
1 . . . . . .
T* = ST ded A d Dk dud A dut B K dud A du (209)

where we define K*, .= K kijduj the contorsion 1-form. Therefore, we have the form equation

TF = K%, A du’ . (210)

Consequently, the symmetric and anti-symmetric parts of the connection are

k k k

oy = {5} + K%

1

Prpa= K= ——
[i5] [i5] 2

1
T = +§T’“ﬂ , (211a)

respectively, which shows that the symmetric part Fk(ij) contains Levi-Civita connection {l’_‘;} and
torsion Tkz»j.

Remark. We also note that if we identify
(Fa)cb = Fcbu (212)
and the connection form is defined by I'*; = I'*;;du’, the torsion tensor will be denoted by

ij =%y =T = 2T (213)
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Christoffel symbols in the orthogonal coordinates If we consider the case in the orthogonal co-
ordinates, we have g5 = go1 = ¢ = ¢*! = 0 and

RS S S B

- = = =_, 214
gu FE g g2 G (214)
The component of Christoffel symbols becomes
Fkij = (ajgki + 0igjr — akgij) (no sum) , (215)
29k

and we have the following properties:

* For j = k, we have

1 1
(Oxgici + Oigix — Oxgi) = %&-gkk = §8i(lngkk) (no sum) . (216)

zk - 5 _
29k

» Fori = j # k, we have
1
M = —(Qf%Jr/ff Ogii) = —=——0kgs (no sum). (217)
2 Jkk 2gkk

* In the general case of dimension > 2, if i # j # k, we have
I'*,; =0 (in orthogonal coordinates) . (218)

In dimension = 2, it is impossible that 7, j, k are all distinct, so we have the same consequence
Fkij - O

Therefore, for dimension = 2, the christoftel symbols in the orthogonal coordinates are given by

Eu 2 Gv

i, ==+ = v

11 QE’ 22 2G7

E G

M=y, == T% =I?,=-2%

12 21 2E7 21 12 2G7

-G —E

M,=—2 1%, = v 219

22 2E ) 11 2G ( )

Example (Polar coordinates). Consider the first fundamental form in orthogonal coordinates
ds* = E du® + 2F dudv + G dv* = dr® + r?df?, (220)

where we have u = r, v = 0 and

E=1,
E.=FEy=Gy=0,
F=0, = o g (221)
» = AP
G=r2.
The Christoffel symbols are given by
2r 1 —2r

[ =T?y=-5==, Dlyp=—"=-—r. 222

21 27557 22 9 r (222)

The geodesic equations is given by (175). Therefore, each component of the geodesic equations
is obtained by

2

0" + %970 + 125,07 = 0" + =10 = 0, (223a)
r

"+ 1100 =" —rf0 =0. (223b)
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Gauss-Codazzi equation Now we have Gauss and Weingarten formulas
Pir = Flz‘kpz + by, (224a)
n; = —b'p;, (224b)

which correspond to the derivative vectors of tangent and normal vectors respectively. By taking the
partial derivative of p,, with respect to v/, we have

;P = O upy + Flz’kp]j + 0;bixn + b,
= @Flikpl + Flik (lejpm + b[jn) + éb-bikn + bik(—bl]‘)pl

= (0T + T3y — bab’y ) py + (Tlikbyy + Ojbix )m. (225)
By interchanging the indices j and %, we obtain
0Py = (OkT"sj + Tk — bigbls )y + (T'ijbu + Okbig)m. (226)
As a consequence, (225)—(226)= 0, which is
9jpiy. — OkP;; = 0;0kp; — OrO;p; = 0. (227)
We define the Riemann(-Christoffel) curvature tensor or simply the curvature tensor as
Rl =0T — 0Ty + Tl T — Tl o™ (228)
and
Risjr = gim R ij; (229)

is defined. Therefore, according to (227), we obtain a set of equations called Gauss-Codazzi equation,
which are given by

0= 0;py, — 8/fpij
= (\Rlijk — bikblj + bijblli)pl + (Flikblj — Flijblk + 0;bir, — Oiby; )n. (230)

0 0

The first one is called Gauss equation

Rlijk = bikblj - bijblk7 (231)

and the second one is Codazzi equation

O;bir, — Obij = T b, — Thirbyj - (232)

We note that there are some symmetries of curvature tensor:

 Anti-symmetric in the indices j and k

Rl =—Ryy. (233)
* Anti-symmetric in [ and ¢ (only for Levi-Civita connection)
Riiji = — R - (234)
* Symmetric in the pairs of /7 and jk (only for Levi-Civita connection)
Riijr = +Rjpai - (235)
We also define the traced curvature tensor called Ricci tensor, which is given by
Ry, = Ry, (236)
and the scalar curvature or Ricci scalar
R=¢*Ry . (237)
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Theorem Egregium of Gauss The indices i, j, k, | = 1, 2, by the symmetries of Riemann curvature
tensor, the following components are vanished:

Rijr = Roojr = 0,  Rynn = Rige = 0, (238)
From the Gauss equation (231), the residual component can be given by

R1212 = b22b11 - b12b12

= NL— M?
Therefore, we can rewrite the Gauss curvature (153) as
b
K= 2o e (240)
g g

which is a function of g;; only, i.e., a 2-dimensional surface in [E? is totally determined by it’s intrinsic
structure. This is the famous intrinsic geometry of Gauss and we call this the theorem Egregium of
Gauss. From the Codazzi equation (232), we only need to consider the case of ¢ = 1,2 and j = 1 as
well as £ = 2. This gives

ob 0b

—112 - —121 = I'yiby — Tiabun (241a)
gg‘ gg (1=1,2).

(’3_;12 — 8_1/?21 = [y1byy — Toobyy (241b)

Remark. In general n-dimensional space M", we can always choose a orthonormal frame, so that
g = 1. Then we call K = R;j;; for i # j the sectional curvature of the 2-dimensional surface in
M", where i, j labeled two components on the surface.

Third fundamental (quadratic) form In analogy we have a Gauss map for a surface, the Gauss
sphere S2. A normal vector n will be sent to be a radius vector of S2. Therefore, n on S? play the
same role as p on the surface M. As a result, we can calculate the first fundamental for of S? by

Ils2=dn-dn. (242)
Now we define the third fundamental form of M to be the first fundamental form of S?
I\ :=1|s2 =dn-dn. (243)

From the first fundamental form, we can calculate the area element on the surface M and S?,
which are denoted by AA|, and A A|g2 respectively. The results can be obtained by

Ap = p,Au+p,Av =  AAlpm = |p,AuAp,Av| = |p, Ap,|AuAv, (244a)
An ~n,Au+n,Av = AAls: = [n,Au A n,Av| = |n, A n,|Aulv. (244b)

However, the vectors n, and n, are given by the Weingarten formulas (128) with (129) and (130).
We can express n,, A n, in terms of p,, and p, by

n, An, = AD(I)u A pv) - BC(pu A pv)

_FEM-GLFM-EN = FL-EMFN-GM_
T BG-F? BG- 2 PP T pa T Tpg — 2 Pt P
LN — M? b
T (p,Ap,) = ~(p, AD,) = K(p, AD,). (245)
e — 2 Pu/NP) g(p p,) = K(p, \p,)
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Consequently, we can measure the absolute value of Gauss curvature by the ratio

AAlsz  [my Amy|AuAv  |K||p, A p,|AuAv
AAly [P, AP JAuAY — [p, Ap,|Audy

= |K]|. (246)

4 Cartan’s moving frame and exterior differentiation methods

We would like to introduce a very useful lemma of Cartan first.

Lemma (Cartan’s lemma). Consider a set of linearly independent frame {e;} (or coframe {¥'}) with
i =1,...,p (p < n) in n-dimensional space M and {E;} is another set of frame. If ¢' N E; =
e NE +---+e' NE, =0, then E; = ¢;;¢/ and c;; = c;;.

Proof. We set the linearly independent frame in M by extending to n-tuple from e; given by

€,€,...,€,,€1,...,€, (247)

'
P n

P

with index « labeled components p+ 1, p+ 2, ..., n. We assume that E; is expanded by frame in M
as

Ei = cijej + cmea . (248)
According to e’ A E; = 0, we have

0= ei VAN Ez = cijei VAN ej + Cz'aei A e*

1 , : _
= = ( Cij — Cj4 )e’ A e + Cia e’ Ne®. (249)
2 N—— \0/
0
Therefore, we obtain the coefficients of F;
Cij = Cji (2503.)
{cm =0, (250b)
which means that E; = ¢;;¢’ is constructed by {e;} only. O

Orthonormal frame We have dp = p,du’ with the basis p;, under the Gram-Schmit procedure,
we can obtain an orthonormal frame (p; e;, €5, €3) given by (110), (111) and (112), where we use the
hatted indices to label the component of orthonormal frame now. We can expand p, by e; shown as

i 2
o j R S _ 15 P, _ aAl CLAl €4
P; a ’Lej (Zaj 17 2) or (p2) <Cl12 a22> <e§) ) (251)

where we call the expansion factor a’; the vielbein (vierbein or tetrad for 4-dimension), which can
be regarded as the GL(2,R) transformation of the frame on M. Therefore, we have to obtain the
differential of frame (p; e;, e;, €3). First we can rewrite dp spanned by frame {e;} as

dp = p,du’ + pydu’
= (ailei + aéleg>du1 + (aiQei + a22e2)du2

- (aildul + aigdu2>ei + (&dul + a%du?)eg = | Wle; + v, (252)

31



with

W= a%jduj (253)

Then we have to introduce the connection w’ 5 for for e;. As aresult, de; can be shown as

dei = w?iei -+ w?ieg + w?ieg , ]
des = wbei + w?ieé + M?Qeg , — de; = wb&eé (d, b=1,2, 3) . (254)

R S 2 a 3 an
des = w sej + wze; + wze;.

In particular, we call the connection form w’; = wi’a@ﬁé the linear connection form and the coefficient

w4 the Ricci rotation coefficients in the orthonormal (non-coordinate) frame. However, we have
condition for w?®; due to the orthogonality

e-e =0 and €5 - €5 = 5&3 . (255)

? J vj

We can differentiate the orthogonality condition e; - e; = d;3, thus we have
d(e; . ej) = de; - e +e;- dej-
= wk;e,; . ej. +€; - wk’je,;,

=w iékj tw jéik

- wg_%wgzzo, (256)

Similarly, we have

d(e; - e5) = |w; + w's = 0 (257)

from e; - 5 = 0;3. Therefore, all the components of WP, are anti-symmetric in the orthonormal frame,
we have the consequence:

» The metric compatibility gives the anti-symmetric property for linear connection form in the
orthonormal frame, i.e.,

V{; g&I; = v5 (5&5 = 65(5&A) —wb[lé — wdi)é = 0 > Wi)dé = —w&l;é. (258)

0

Remark. In pseudo-Riemannian space, we have

d(es - €) = w'ang + winae = Wy, +wap = 0 ,‘ (259)

and the metric compatibility in pseudo-orthonormal frame should be read as

(260)

d d
Ve gah = Vetlap = €e(ngp) —waengy — wenzg =0 = ‘Wéaa = ~Waje -

0
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Finally the equation (254) is reduced to

de; = w’ie; + win, (261a)
des = wlgei + wgﬁn, (261Db)
dn = w';e; + w?se;. (261c)

Now we can write down the first, second and third fundamental form in orthonormal frame, which
are given by

T=dp-dp= () + ()", (262a)
I =—dp dn=—vwl; — 02 = + 02, (262b)
I = dn - dn = (wig)Q + (wég)Q = (f,ugi)2 + (wgé)z . (262c¢)

It can be shown that wgi and wgé are linear combinations of ¥ or du given by (290) due to Cartan's
first structure equation (be introduced later) and Cartan's lemma

w::‘i = bﬁﬁ% + bigﬁ?, — (w?i) _ <bﬁ biﬁ) (19}) _ (263)
w3y = by + byt ws bai bss) \*

Consequently, the second fundamental form becomes
I = b;5 (91)” + byg0?0" + by 0102 + by (V%) = by 0797 . (264)
We consider the following matrix representation for tensors
e, —e, U-—9, b;— B. (265)

Under the special orthogonal transformation SO(2,R) for frame and coframe, we have a new or-
thonormal frame

e = Pe _ . .
o prg Wih PT=P7. (266)

where P € SO(2,R) and T means the transpose operation for matrix. As a result, we can obtain the
diagonal matrix Bp from B through P by

II=9"BY = (9) PPBPY, (267)
Bp
ie.,
B B,=P BP= (’Bl :32) : (268)

Therefore, the Gauss curvature and mean curvature can be obtained easily by

K= det(BD) = det(PT) det(B) det(P) = det(B) = | bi5055 — bisbsi , (269a)
1 1 1
H=ZuwBp= B = 5(bﬁ + bs3) (269b)

respectively, where the trace of the matrix B is invariant under the SO(2, R) transformation.
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Covariant exterior differentiation We define some notation for differential operators for function,
vector and 1-form. We use d, d and dy for differentiation, exterior differentiation and covariant
exterior differentiation respectively.

* For a function (0-form) f, the differential df which can also be regarded as the exterior differ-
entiation of 0-form f:

dvf=df =df. (270)

* For a vector e;, we have an absolute differential of vector de; which is described by Gauss
formulas in differential form formalism (126):

dye; = de; = De; +b:n, (271)

is a vector-valued 1-form. If there is no normal space M= of M, i.e., there are no n vector and
b;:, the differential is actually equal to the orthogonal projection of vector e; on M

i

dve; = de; = De; . (272)

« For an 1-form ¢, we only do the exterior differentiation on e

dotd’ = dv'. (273)

Remark. The covariant exterior differentiation dy is a combined operator, which do the exterior
differentiation and covariant derivative on an 1-form and vector respectively.
For a function f, we also note that the second differentiation is

0*f 0 f
- 0z0z A Oyox

0 f
0xdy

02 f

2
d°f(z,y) 950y

dxdy +

dydx +

dydy # 0, (274)

which should not be confused with the second exterior differentiation

9% f 02 f o2f  9f

0yox 8x8ydy A dr = (83/8:6 B 0x0y

d*f(z,y) = ddf = dx N dy + )d:c/\dy:O. (275)

In addition, d%, would not be vanished in general. Therefore, the second fundamental form is
Il =—dp-dn=+d’p n=(p;du'dv’) - n=b;du'dv’ (276)

due to dp - n = 0 which has been shown in the last term in (120). We note that d?p should be
realized as a second covariant derivatives of p in (280).
For coframe du'’, the corresponding exterior differentiation is vanished, which is shown as

ddu' = d’u' = 0. (277)

We call aii a holonomic frame and du’ a holonomic coframe which is an exact form according to

the Poincaré lemma. For 9" = a';du?, its exterior differentiation is

dY' = da'; A dul + aljd%u #£ 0 (278)

which is called an anholonomic coframe or a Pfaffian form dual to the anholonomic frame e;.
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Supplement. We note that the exterior 2-form d%e; will be introduced as the second structure
equation through the covariant exterior differentiation and related to the curvature 2-form of (293)
and structure constants of (315) later

1 - - 3
die; = dy(de;) = §lez93 A ® e (279a)
= dv(ﬁ'A“D,%e;) = dvﬁiC ® D;e; —19]% A 195 & D;D,;e;
— —
619 e

1 5 A 5 5 7 1
— —§Ck3ml9] A" ® Fl;,;ei + WA 7.9k R = <D5ch — D,;D;)e;

2
~ m N N 1 . N
e N X 5( = ijff Fl%mei—i-(D}-ng — D,;Dj)t’,g)
———
Dme%
4 - 1 .
— 9 A0* @ = (= "D + D;D; — DiD; e;. (279b)

However, the second covariant derivatives of a vector e; should be

d%¢; = D*¢; = D(V* © Dye;) =7 @ D:0* @ Dye; +9% © 9" @ D Dye;
—~
Tk om  Tlye

" o @ oF @ (T3 T e +D; Dges)
D.
m€;

= @ 0" @ (™D + D; Dy )e;. (280)

Therefor, we conclude that dy.e; # d’e; because de; is a vector-valued 1-form. We note that that
the wedge product is obtained by anti-symmetrizing the tensor product

AAB=(AQ B)* = %(A@B—B@A) = %(A;Bj ~ B:A)0 AT, (281)

where A indicates the anti-symmetrization. The anti-symmetrization of D;D;e; and rm s will be
given later, which are shown in (318) and (327b) respectively. As a result, the anti-symmetrization
of d*e; can be shown as

2 2 1 N ~
(d*e;)* = (D?%¢;)* = D A De; = N9*F ® 5( = Tas D, 4 ngj.,;)ei (cf- (279a) or (293)) .
(282)

Canonical 1-form In general case, {e;} does not necessarily be chosen as orthonormal, i.e., the
metric tensor is e; - €, = g,; 7 0,5 If {es} is an orthonormal frame, we have anti-symmetric
property of (256) and (257). We would discuss from the differential of frame (p; e;, e;, ;) and write
the equations by the covariant exterior differentiation as

dyp =" ®e, =10, (283a)
dye, =’ ® e, (283b)
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where we have defined ¥ := dyp = dp the canonical I-form, which is a vector-valued 1-form. We
will show that the canonical 1-form ¥/ is an identity map of vector in the frame e;. Consider a vector
V = V'e;, the canonical 1-form act on V' gives

I(V)=9"® ed(Vgel;) = Véﬁd(el;)e& = Vi’ége@ = Vi’el; =V. (284)

Remark. 1f we consider a point p move on the surface M in E3, the differential would be a vector
spanned by e; and e; only, which would be written as

dyp = Ve, = Ve, = V'e; + Ve, (285)

with 93 = 0, it would be reduced to the equation given by (252).

Cartan’s first structure equation Now we do the covariant exterior differentiation on (283). The
covariant exterior differentiation of (283a) is
dyd = dip = dv(V* ® e,)

=d¥" ®e; + (—1)9* A De,

= dvte, — ¥V A wi’aeg,

— (A0 + W A 9)e;

= (dy?)’e;

=T, =T #0, (286)

where D is a connection with respect to e,. Here we have defined T the vector-valued torsion 2-form
and the corresponding component the torsion 2-form as

To = (dy?)® = D 9 = dv® + ' A, (287)

component of

where D can be identified as operation

s

act on the differential form which is the component of the corresponding vector-valued form. The
equation (287) we obtained is called Cartan's first structure equation.

Remark. Since p moves on the surface M in E3, we have dyp = 19iei + ﬁéeg and ¥® = 0. Follow
Cartan’s first structure equation (287), we have

0=dyP = —w A9 —wd AD? = —wh AV, (289)
According to Cartan’s lemma, the connection form is obtained as
w’; = b7, (290)

which gives the equations (263).
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dvp @

p q dvp

(a) Torsion in space. (b) Torsion on surface.

Figure 8: Torsion is related to the translation.

We can consider an infinitesimal contour integral for dvp infinitesimally around a point as a
boundary 0D of a small region D. By applying Stokes’ theorem to the contour integral of dyp over

0D gives
7{ dvp:/d%p:/T (291)
oD D D

ngﬁ&:/DDz?&:/DT&. (292)

The integral result implies that the translation of a point or the displacement dyp is associated with
the torsion. If there is no displacement, i.e. dvp = 0, the space would not be twisted.

or equivalent to

Cartan’s second structure equation Similarly, we do the covariant exterior differentiation on
(283b) and obtain

d%e@ =dy (de X ei))
= dw’; ® € + (—1)w’s A De;
= dwi)@eg — wB@ VAN wége@
= (dwbd + wb@ A wé&) €;
= (dzve&)i’el;
=R’%e; =R; #0. (293)

Therefore we have the vector-valued curvature 2-form R with the corresponding component curva-
ture 2-form given by

Rla = (d%e;)" = D o’y = du’s + b Ay, (294)
~—

component of dy eg

which is called Cartan s second structure equation.
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€;
e;,+dve;

Figure 9: Curvature is related to the rotation.

The similar infinitesimal contour integral for dye; gives

7{ dye; = / die, = / Ra (295)
oD D D
f{ why = / Dw’; = / RY, . (296)
oD D D

which means that the rotation of a vector is associated with the curvature. If the vector does not
change the direction after moving around a contour, i.e. dye; = 0, the space would be flat.

or equivalent to

First Bianchi identity The exterior differentiation of two structure equations can get more infor-
mation of torsion and curvature. The structure equations are

{ T = d0® + W' AP, (297a)
R = dw’ +w: A w. (297b)
We take the exterior differentiation of the first structure equation shown by
d7% = 9% + dw® A 9° — W A di
— (R¥ — ws Aw®y) A0 — wy A (TP — wba A 99)
— R AP — wi AT AT — wy AT 4wy A A O (298)

then we obtain the first Bianchi identity

DT = dT* + Wy A TP = R A9 (299)

If we have torsion-free condition 7% = 0, the first Bianchi identity becomes

0="RY A0
1 . R R R
= §Ral;éczl90 A DA 9P
e a a a a a é i b
= 5 (R + R gy + B oo = Ry = B — B 4) ¥ AN
= (Rdgéd + R + Rdag,;é) 9¢ A 9L PP : (300)
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resulting in

R+ R g+ R = 0. (301)

Second Bianchi identity Similarly, the exterior differentiation of the second structure equation is
dRY; = d’w; + dw’s A w’; — ws A dw’)

= (R&@ — wddA A CL)CZ@) A wél; — Wi A (Réé — wéd A w”zl;)

= R Ay Ad Ry — s AR + o AT A G (302)
——

+w?; ARA due to 2-form R%;

which leads to the second Bianchi identity

DRY = dR% — w3 AR +w': AR =0. (303)

Remark. 1t is essential to consider the geometric structure from Cartan’s viewpoint. The first
structure equations in Riemannian geometry is restricted to be torsion-free condition. Then the
structure equations are reduced to

A0t = —w’ AP = 498 AWty (304a)

R = dw®; + ws A w . (304b)

Because of metric compatibility, we have w?; = — P, (or w,; = —wj, In pseudo-Riemannian
geometry), which gives

wdg = w%éﬂé = —wi’d = —wi’&@ﬁ‘é — wé‘gé = —wi’a@. (305)

Due to (304a), we obtain

. - . R - R 1 . R - R
d9® = 9° Aw?y = w9 ADE = 3 (wh, — w3) 9" A°. (306)
However, d¥? is a 2-form, it can be written as
a_ L a o é
V" = a0 A (307)
which leads to
0% = w', — W'y (308)

By permutating the indices a, b and ¢, we have the equation
a&i)e Al — aédi) = W&Ba — Wb = Qwéi)é. (309)
The resulting connection coefficients are

a.
Wige =

(a3 + abaa — a%y;) - (310)

DO | —
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It can be shown that

a’;, = —c., (311)

where ¢, is called the structure constants or commutation coefficients, which is defined by the
commutation relation of the anholonomic frame

s = [0 5t

= [ea(a;")a’% — e;(aa®)a’s] s := yze: - (312)

Here the anholonomic frame e; is identified as the so-called Pfaffian derivative. As a result, we
obtain the the structure constants

C

cAdI; =€ (ai)b)aéb —€; (a&“) al, (313)

We note that it is apparent that the commutator

[0u, D) =0 (314)
because two partial derivatives can be interchanged. As a result, we conclude that there is no
structure constants in holonomic frame. Therefore, the commutation coefficients can also be
called anholonomity which characterizes the property of the anholonomic frame. On the other

hand,

dy® = d(aébdxb)
=d (aéb) da®

o .
179 9 a,qa b
= 5(855@@ b — @a a) ((1[1 9 ) AN (ag)bﬁb)

1 a . 0 . - 3
= — (a;)baa“—acb — a@“al;b—aca) 94N 9P

2 ol Oxb
1 R R R .
b (ai)bea(acb) - a@“el;(aca)> 9 AP
L b é a a A ,9b
=—5l¢a vea(a;’) — a‘eey(as®) |V AU
1 . . 5
= =50 A 9 (315)
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where we have used a;’e; (a%) = —a®es(q;”) due to a;°a’), = 6; The above result proves (311)
and finally we obtain the linear connection coefficients

; 1, . 5 .
W = D) (Cai)a + e — Ccaé) (316)
or
wh, = -5 (" — e — o) (in pseudo-Riemannian geometry) . (317)

Supplement (Covariant derivative in anholonomic frame). We can do the calculation in both holo-
nomic and anholonomic frame. However, according to (251), we have

D:D;e; = a;’D; (a,;kae;>
= a;’a;" D;Dye; + a5’ (0;0;") (Die;)
= ajja,%ijDk(a;ipi) + a[k(eja,;k)(D[e;)
= ajja,;ij (a;kapi - (3kagi)pi> + a[k(ejakk)(Dieg)
= a;'a;* <a%iDjkai +(050;") Dup; + (Oka;') D;p; + (@aka;i)l)i)
+aly(e;a;) (Dre;) - (318)
So we can find

(D}D]% — D,%Dj)e; = a;iaﬁ.jaﬁ,k (DjDk — Dk:Dg>pl + (alk(eja,;k) — alk(e,;ajk)) (Die;) o (319)

Here we move the last term of (319) to the left-handed side and use the structure constants cij i
defined by (313). Then, we also use (190) and (312) to obtain the equation

a;"a;ja,;k(DjDk — Dij)pi = (Dfof — D,;Dﬁ — Clﬁ{DlA) e;
= (D;Dy = DiD; = Dy, )e;

= (Dle} - D,%Dj - D[eijefg])e; 5 (320)
It gives the general formula of curvature tensor
Holonomic frame: Rlijkpl = (DjDk —DyD; — 0 )pi7 (321a)
D[a]. ,8;,]=0 which is vanished due to (314).
Anholonomic frame: Rl}j,;e[ = (D;D,; — D;.D; — D[%%])e; . (321b)

Therefore, one can consider three vectors X = X J e;, Y = Y’h“ef€ and Z = 7 %eg, then it can be
shown that the frame independent formula of curvature tensor is

XIY*Z 'Rl ie; = (Dx Dy — DyDx — Dixy))Z := R(X,Y)Z. (322)

After the calculation, (321) can be written in terms of the connections and structure constants
Holonomic: | R’y = 0,1 — Ok + Dl T — Tk D5 (323a)
Anholonomic: Rigj.,; = ejwi;k = e,;;wigj + wimjwm% — w[m;;wmgj - wi;mij-;; . (323b)
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the left-handed side of (320)

with e; :== D, f of

I 0 i g kpl
Rijk—alaiaj G

{ Holonomic frame: TijkDif = Tijkaif = (DjDk — Dij)f,
Anholonomic frame: Tij,;D;f = T’ﬁ:e;f = (D;D,;C — D;D; — [e;, e])f,

XIY*T' e, = DxY — DyX — [X,Y] = T(X,Y).

X(f) = XI¢;(f)

In terms of the connections and structure constants, (325) can be written as

Holonomic:

Tk =T — I,

Anholonomic:

SR S SR S
Tjk—wkj W' — Cp -

and

X(Y) = Xe;(YF)e, + XY Fese; .

Gl —

7k

In addition, the transformation formula for torsion tensor should be

i3 ki
a’ia; ap"T" i .

Finally (320) gives the transformation formula for curvature tensor by substituting p, = al 1€; to

(324)

Similarly, it can be shown that by computing the commutator of the covariant derivatives on
function f, i.e., (D;D,; — D,;;Dj.) f, we obtain the following equations

(325a)
(325b)

and the frame independent formula of torsion tensor is given by vectors X = X j e;andY = Y’%elfC

(326)

(327a)

(327b)

Here we note that a vector X act on a function f and a avector Y are respectively given by

(328)

(329)

Non-fixed frame and gauge transformation For general space M", the vector V = V°E, (a =

1,...,n)under local coordinate X can be spanned by a non-fixed holonomic frame E, :

_ _0 ;
= 5%« With

dE, # 0. The vector E, can be spanned by another set of anholonomic frame e; given by a GL(n,R)

transformation

E, =

Abe; with A, € GL(n,R),

and we also have coframe

where we have defined the inverse

Therefore,

dX® = A0,

dV =dV*E, + VdE,
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and we have to introduce the connection form I'’, and wB@ for the frame E,, and e; respectively, which
gives

dE, =T1",E,, (334a)
de, = w'se; . (334b)

The differential of V' can also be expressed as
dV = dV°E, + V'I’E, = (dV* + V'T%)E, :== (DV)°E,. (335)

Remark. We note that there is no normal space M"™* of M", therefore, we obtain
dV = (dV)" = DV, (336)

where the connection D is defined with respect to basis E,. As a result, the differetial operator d
also represents the covariant derivative D on general space M™.

On the other hand, the differetial
dE, = dA e, + A de; = dA,e; + AP yuties = (AP, + ACuu’s)e; . (337)

From (330) and (334a), it implies the relation between two connection forms

T, E, = T, Ab ey = (dA% + A%uws)e,  —> [T, = A(dAY, +wPaA%) .| (338)

which is a frame transformation or GL(n,R) gauge transformation of the connection form.

Remark. We note that the relation (338) comes from the frame transformation or GL(n,R) gauge
transformation, rather than metric compatibility. This relation is sometimes called vielbein postu-
late. However, the equation is still valid even if the frame e; is not orthonormal or the nonmetricity
Qabe = —Vagee is not vanished. In such case, the connection w’; contains the symmetric or trace
part, i.e., W # 0 or w?; # 0. So it is improper to call the relation postulate. People always
implicitly define a total connection D(I", w) of tensor with respect to both the holonomic and an-

holonomic basis of E,, dX?, e; and ¥%. By giving a tensor A := Ai’aei) ® dX*, the connection
D acton A is

DA = D(A,¢; @ dX*)
= (dA%)e; ® dX® + A%, (De;) ® dX° + Alye; © (DdX®)
— (dAb,)e; ® dX° + AP, (w'e:) ® X + Abye; @ (— T°.dX°)
— (dAb, + A%t — APT%,)e; ® dX® =0 (339)

due to (338), which is independent of the metric compatibility. As a result, the component gives
the vielbein postulate

(DA, = dAP, + A%uwb; — AP.T¢, =0 (340)
or

VdAi)a = 8dAi’a + Aéawi)@d — Ai)crcad =0. (341)
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Figure 10: Two points on the hypersurface M™~! in M™.

Now we will discuss the connection on the hypersurface M"~! of M ™. Consider a point p on
M1 is identified by a vector V' in M ™. Simirlarly, a point q on M"~! is represented by V" in
M ". Here we only focus on the connection on M"~!, we have restricted our case that dV = q—p =
V' — V lays on the hypersurface M"~! only. So dV can be expanded not only by frame E, = -2

_ oxe
(a=1,...,n)on M " but also by frame 0; = a?u‘ (t=1,...,n—1)on ML

Remark. We can consider the case of n = 3 and two infinitesimal closed points q and p with the
spherical coordinate X = (7,60, ¢) in M * and polar coordinate u’ = (p, ¢) in M?. Therefore
E, and 0; are non-fixed frames.

The differential dV* can be given by

. ove  gve
Ve = Z—dut —-

then all the n-dimensional vectors can be expanded by (n—1)-dimensional ones, the resulting equation
of (335) would be rewritten as
dV = (DV)"E,
= (0Vedu' + V', .dX°) E,
. o0xXe .
= (0" du' + VT = du') B,
o

= (O V* + V' T%h)du'E, := Vidu'E, . (343)

dv = 0;V°du’", (342)

Here we define

2

V, =V E, = (O;V*+ V'T“h%)E, . (344)

Remark. The result of (66) in E? can be reduced from (335) by

S Ea — 5@ ) (345)




Due to (334a) and (338), we have
0= dd, = dA®e; + Abow'ies = (AP, + A%wbs)e; . (346)

As a consequence, the connection form w®’; is obtained by

whs = — A0 dAP, = + AP, dA". (347)

In addition, within (345), (343) becomes as

dp = (92" + 2° I h%)du's, = (0;2*)du's, := d;pdu’ . (348)
i

Therefore, (344) reduces to the derivative vector p, := d;p on the hypersurface M of E? is

P, = azp = &-xaéa = (82$, 8Z'y, 812) . (349)

Figure 11: Two vectors on the hypersurface M™ ! in M™.

Induced connection However, if we move the reference point o on the hypersurface M"~!, the
vector dV should be regarded as the difference between V' and V' on M"~! and is equivalent to
DV with respect to the basis -2; as shown in Fig. 11. Then, we have

Out
2
— — k_~
dV =DV = D<V auk>
= (6;V*F + Vleli)du"% . (350)

By using chain rule to expand E, in terms of %

) ouk o L0
oXe  0Xe Quk fra Ok (351)
——

ha*

E, =

and substituting the relation into (343), we have
0

dV = (8;V* 4 VTch;) du’ (ha’“w)
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_ <ai (v ox Jhat VIS OX% b 1, )duii

ous oul ouk
—~— ~
ha]. hbl
‘ 9
_ /I pa . K l 1a k b 1a cyp k i
<(azv )h ]ha +V ((8zh l)ha + h lF bch zha ))du 8uk’
sk
k ! a k b 1a c a
- ((aiv )4V <(8ih Dha® 4+ BT he ke >)du S (352)

Now we compare (350) and (352), the induced connection IT'*;; on hypersurface M"~! can be obtained
from the connection I'*;, on M ™ through the projection k"

% = (0;h%)he” + WY T%eh%ha" . (353)

We note that the discussion above can be generalized to the case for arbitrary frame (including fixed
and non-fixed frame).

Curvature and torsion in subspace Now we would like to consider an n-dimensional space M
embedded in a m-dimensional space M . We consider a so- -called Darboux frame of M. We label
the components by indices @,b,¢é = 1,...,7m on M the indices 7, j,k = 1,...,7 on M, and the
indices p,q,7 = v + 1, ..., 7 on the normal space M+ of M in the orthonormal frame. We define
the geometric objects on M specified by barred symbols. The frame e, is extended by the vector e;
and e;

= fedle — e (e) = (8. (54)
P
Similarly, we have
P U0t — 9= (%) = (0 w) (355)

Therefore, the components of {€,} and {74} are &; = e;, &, = e,, ¥ = ¥ and ¥? = . The metric
is defined by the inner product of two vectors, we have the following relations

(s, ) =0y, gle;e) =05, g (e e) =055, (€, €5) =0, (356)

where g, g and g are metrics of the manifolds M , M and M" respectively. Due to the metric
compatible condition, we have @’; = —%; and

@5 = 800w + u0hw; + 0208w s + Gh0hw (357)
which can also be recognized by the matrix as
. il
wi= (@)= “ “i). (358)
Wiy wiy

Now we will discuss the dynamics on subspace M only. The differential of frame on M are given
by
{ dyp = 9%, with ¥? =0, (359a)

dye, = o'se; . (359b)
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or

dvp = 19'16% , A dvp 19? 0 . (3603.)
dveg = wjgej- + wq;eq , — dv% = u)j; wq,z <ei> . (360b)
- . R 7 il q
dveza = w]ﬁej- + wqﬁeq . dvep w]ﬁ wqﬁ (3600)
In addition
P =0 = 0=DF=d 1’ 4’ AV +uPyA 0 =T7, (361)
0 0

Thus, we have

W AP =0 (362)

Applying the Cartan’s lemma, we obtain the connection form

Wy = —wiy = WP (363)

7

or

wy = hgt?  and  wy, = —wy = —hgst? = hyps (in pseudo-Riemannian geometry) .
(364)

Now we would like to calculate the differential of structure equations. The covarint exterior differ-
entiation of first structure equation is obtained by

d2p = dy (V7€) = dy(J'e; + IPe;)
— dV'e; — V' Adye; + diPe;, — 9 Adye;
= dv'e; — 0" A (wie; +wPiep) + dvPe; — 9P A (W pe; + wises)
= dY'e; +w’; ADe; +wf; A Dey + dPe; + wiy AIPe; + Wiy AdPe,
= (A9 + W' A 'y A 0P)e; + (A9 + WPy A 9T +uP; A D)ey

————
7'2 TP
= T%, =T'e; + TPe;. (365)

By using (361), we obtain

dip="Te = (T +wy A V7 )e; =Tle;, (366)
0

which leads to the equation

T =T. (367)

Remark. For case of M is embedded in M , we have consquence of

T =T (368)

It means that there is no extrinsic torsion contribution in the equation of torsion in embedding
structure of geometry (cf. Gauss equation (372a)).
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The covarint exterior differentiation of second structure equation is
d2e, = R%e, = Rlae; + Ry, (369)
which can be calculated separately by d%e; and d%e;. They are shown by
dZVeg = dw%ej — wii N dve§- + dwﬁgeﬁ - wﬁg Ndye;
= dszeﬁ - wjf A (wkﬁe,ﬂ€ + wﬁeeﬁ) + dwﬁseﬁ — wﬁs A (wjﬁeﬁ + wqﬁeq)
= dw’; i€ + Wk /\wj ek+w” A ws ep—i-dw ep+w3 /\w”e —l—wq A wP €5

(dwﬂ SR YNEL —|—uﬂ AwP)es + (do; + 0P Awl; + 0Py Awl)e;

e

R
= 73,%85 + 7_?,13%613 = ﬁdgéd (370)
and
dQVeﬁ = dwgpe; — w%ﬁ VAN dveg + dwageq — wag VAN dveq
= dw'pe; — w'p A (Wie; + whieg) + dwise; — wiy A (wise; +w'ger)
= dw'se; + W'y Aw'pes +wli Aw'seq + dwlpes + w'g Awlpe; +w'y Awizes
(dw —l—w /\wj +w Awls ) + (dwq +wl: AW —l—wq AW ) e;

Rqﬁ
= ﬁ%ﬁeg + 7_2%% = ﬁ&ﬁé@ s (371)

respectively. According to the results above, we have the following equations:

Gauss equation:  R'; = RJ; + wiy A w?s | (372a)
Codazzi equation:  R”; = dw”; + w?; A W + WPy A Wl | (372b)
Ricci equation: R, = R, + wi: A w%ﬁ . (372c¢)

Subspace of E™ We consider that a space M is embedded in the flat space E™. We can chose the
cartesian coordinate for E™, every component of the orthonormal frame {e;} is related to the fixed
cartesian frame by

e =a’d; = aﬁji, and ' = a;da? (i=1,2,...,n),
% v 7 Qxﬂ J
(373)

aﬁq% ,
where a7, at i € SO(m,R). Therefore, the differential of the frame on subspace M with 97 = 0 is
given by

dyp =7 ®e =da' ®0;, (374a)
{dvé@ =, 06 =T ®04, (374b)

and we can show that the torsion and curvature are vanished by using (374) in terms of cartesian
frame, which gives the following equations for frame with torsion-free and curvature-free on E™

dip=Te, =0, (375a)
die; = R%e;, =0, (375b)
die, = R%e, = 0. (375¢)
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The equations (367) and (372) turn out to be

;

Torsion-free:  7° = dv' + w%. AP = 0, (376a)
Gauss equation: R’ ;= —/ p AwPs = WP 5 A w?s (376b)
Codazzi equation: 0 = dw”; + w’; A W+ wPy AWl (376¢)
Ricci equation: R‘?ﬁ = —w‘?; A w%ﬁ = w‘ig A wﬁ; , (3764d)

because all barred torsion and curvature 2-forms should be vanished in E™. According to (376a), we
have torsion-free, it leads us to have Ricci rotation coefficients written as (316). From the consequence
of (363), the Gauss equation (376b) is

“~ 1 “~ * *
R = §Rﬁ%i19k A

)

= (W30%) A (W) = o (WPhP5 — WP )08 A, (377)

N | —

ie.,

R73jp = BPihPy — BP by (378)

or

f&mz—mﬁmﬁ+MMﬁk:@%mﬁ—%Wﬂk(mmwmummwmmgmmmw.(W%

The Codazzi equation (376c¢) becomes

0= d(hﬁ%jﬁj) 4 (hﬁj‘fﬂﬁk> /\wj% +wf’q A (hqgjﬂj)
= d5 N+ WA 07+ WP 0" N 4 BTl A (380)

The Ricci equation can be read as
q __ 1 q 191% 19[
R = éR i VAN

= (WTd™) A (W0) = o (hThP — hTgh? )05 A9 (381)

DO | —

ie.,

Ry = hiphPy — Wy (382)

or

R ;= —hTyhi s+ high ;= hihyis — highy's  (in pseudo-Riemannian geometry).| (383)

Example (Hypersurface of E*). If we consider M and M to be M? and E* and 525 is assume
to be aligned to the normal vector n of M, we have

e =a’0; = agj%, and V' = a%jdxj (i,7=1,2and 2* = x,2° = 3),
(384a)

€; = a3’d3 and V% = a’3dr® (2P =2 =2).

3
= A5 ———
3 9x3
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Due to the fixed condition p = n + 1 = m = 3, it is impossible to have p # ¢, which leads to the
results for hypersuface with 93 = 0 of

R% = (0 (for hypersuface), (385)

and

wP; =0 (for hypersuface) . (386)

We can identify hg%j. to be b;; which is the extrinsic curvature of M. The corresponding component
equations of (378) and (380) are

Rj%[ = bjl}bﬁ — bﬂ*bﬁf 9 (3873)

(2

0 = dby; A + b d? + byl 95 A O (387b)
If we use the holonomic frame with coordinate {u’} on M, we have

4 3 . 4 a ] . ~ o a ] N
V' =a';dy’ = a’ja—;duk =du® = €' := alja—zk = 0" (388)

such that d¥ = ddu’ = 0 (or c% — 0) and w’; = I'Y;, therefore (387a) and (387b) becomes

R = bjibi — bjibig (389)

and

(Okbij)du® A dw? + (bjpIVy)du* Adu! =0 = |Okbij — Oy + buT"; — by T = 0,
(390)

which have been given by (231) and (232) respectively.
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