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Abstract

This is a note based on a course of elementary differential geometry as I gave the lectures in
the NCTU-Yau Journal Club: Interplay of Physics and Geometry at Department of Electrophysics
in National Chiao Tung University (NCTU) in Spring semester 2017. The contents of remarks,
supplements and examples are highlighted in the red, green and blue frame boxes respectively.
The supplements can be omitted at first reading. The basic knowledge of the differential forms
can be found in the lecture notes given by Dr. Sheng-Hong Lai (NCTU) and Prof. Jen-Chi Lee
(NCTU) on the website. The website address of Interplay of Physics and Geometry is http:
//web.it.nctu.edu.tw/~string/journalclub.htm or http://web.it.nctu.
edu.tw/~string/ipg/.
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1 Curve on E2

Figure 1: A curve.

We define n-dimensional Euclidean space En as
a n-dimensional real space Rn equipped a dot
product defined n-dimensional vector space.

Tangent vector In 2-dimensional Euclidean
space, an E2 plane, we parametrize a curve
p(t) =

(
x(t), y(t)

)
by one parameter t with re-

spect to a reference point owith a fixed Cartesian
coordinate frame. The velocity vector at point p
is given by ṗ(t) =

(
ẋ(t), ẏ(t)

)
with the norm

|ṗ(t)| =
√
ṗ · ṗ =

√
ẋ2 + ẏ2 , (1)
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where ẋ := dx/dt. The arc length s in the interval [a, b] can be calculated by

s =

∫
ds =

∫ √
(dx)2 + (dy)2 =

∫ b

a

√
ẋ2 + ẏ2 dt =

∫ b

a

|ṗ(t)| dt . (2)

The arc length can be a function of parameter t given by

s(t) =

∫ t

a

|ṗ(t′)| dt′ . (3)

From the fundamental theorem of calculus, we have∣∣∣∣dsdt
∣∣∣∣ ̸= 0 =⇒ ṡ(t) = |ṗ(t)| > 0 . (4)

According to the inverse function theorem, we have t = t(s). One can parametrize the curve by arc
length s as p(s) =

(
x(s), y(s)

)
. The corresponding velocity vector should be p′(s) =

(
x′(s), y′(s)

)
,

where we have x′ := dx/ds. We can rewrite the derivatives of x and y with respect to s as
x′ =

dx

ds
=
dx

dt

dt

ds
= ẋ

dt

ds
,

y′ = ẏ
dt

ds
.

(5)

Thus, the norm of the velocity vector parametrized by s can be calculated as

|p′(s)| =
√
x′2 + y′2 =

√
ẋ2 + ẏ2

dt

ds
= |ṗ| dt

ds
=
ds

dt

dt

ds
= 1 , (6)

which implies that the velocity vector p′(s) is a unit vector. We can define a unit tangent vector as a
velocity vector parametrized by s

T ≡ e1 := p′(s) . (7)

Normal vector Due to e1 · e1 = p′ · p′ = 1, we have

e′1 · e1 + e1 · e′1 = 0 =⇒ e′1 · e1 = 0 =⇒ e′1 ⊥ e1, (8)

it indicates that e′1 is a normal vector. The principle normal vector is defined by

N ≡ e2 :=
e′1
|e′1|

(9)

as a unit normal vector at p(s). The curvature of a curve p(s) is given by κ(s) = |e′1(s)| > 0, which
can be realized as a norm of the acceleration vector a := e′1 = p′′. Therefore, we have a relation

e′1 = κ(s)e2 . (10)

Remark. If a vector V is an unit vector, |V | = 1, the corresponding derivative vector would be
perpendicular to itself, i.e.

V ′ ⊥ V . (11)
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Osculating plane The plane is spanned by the vectors e1 and e2 is called osculating plane.

Newton’s second law In classical physics, we have a momentum vector p = mT = mp′ with mass
m. The force F is defined by Newton’s second law

F =
dp

ds
= m

dT

ds
= ma = mp′′ (12)

with respect to parameter s.

Frame A set of vector e1, e2 equipped with a point p calls frame. In such of case, a frame at p is
denoted by (p; e1, e2).

Frenet-Serret formula in 2D From the orthonormality condition ei · ej = δij (i, j = 1, 2), we have

e′i · ej + ei · e′j = 0 (13a)
=⇒ e′1 · e2 + e1 · e′2 = κ+ e1 · e′2 = 0 (13b)
=⇒ e1 · e′2 = −κ (e′2 has component − κ along e1 direction) (13c)

=⇒ e′2 = −κe1 . (13d)

As a result, we have the following relations
p′ = +e1
e′1 = +κe2
e′2 = −κe1

=⇒

p′

e′1
e′2

 =

 1 0

0 κ

−κ 0

(e1e2
)

(14)

called Frenet-Serret formula.

Example (Circle in E2). A circle with radius r can be parametrized by p(t) = (r cos t, r sin t)
with 0 ≤ t ≤ 2π.

Figure 2: A circle.
The tangent vector is

ṗ(t) = (−r sin t, r cos t) (15)

with norm

|ṗ| =
√
r2 sin2 t, r2 cos2 t) := r . (16)
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The arc length s(t) is

s(t) =

∫ t

0

|p(t′)|dt′ =
∫ t

0

r dt′ = rt . (17)

Therefore, the circumference is

L =

∫ 2π

0

|p(t′)|dt′ =
∫ 2π

0

r dt′ = 2πr . (18)

By t = s/r, the circle p(s) and its tangent vector are

p(s) =
(
r cos

s

r
, r sin

s

r

)
(19a)

and

p′(s) =

(
− sin

s

r
, cos

s

r

)
= e1 = T (19b)

respectively. From (19b), we have

e′1(s) =
(
− 1

r
cos

s

r
,−1

r
sin

s

r

)
. (20)

The curvature κ can be obtained by

κ = |e′1| =
√

1

r2
cos2

s

r
+

1

r2
sin2 s

r
=

1

r
, (21)

which is the inverse of the constant radius r. The normal vector can be calculated by

e2 =
e′1
|e′1|

= r

(
− 1

r
cos

s

r
− 1

r
sin

s

r

)
=

(
− cos

s

r
, sin

s

r

)
. (22)

Figure 3: The Gauss map G.

Gauss map Gauss map G is a mapping which
globally send all the points p of curve to a unit
circle S1 (a Gauss circle) centered at c and send
the corresponding normal vector e2 to a radius
vector from c pointing to S1, which is shown
as Fig. 3. Therefore, e2 can be represented as
a point on S1.

Let’s consider two normal vectors e2(s) and
e2(s′) with respect to two infinitesimal points
p(s) and p(s′), where s′ = s + ∆s is infinitesi-
mal close to s. We can expand e2(s′) at s:

e2(s′) = e2(s+∆s)

≈ e2(s) + e′2(s)∆s
= e2(s) + (−κ(s)e1(s))∆s
= e2(s) + (−κ(s)∆s)e1(s) , (23)
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which is the parametrization of a point under the Gauss map. Thus, we know the distance between
two infinitesimal point e2(s) and e2(s′) on Gauss circle given by

|e2(s′)− e2(s)| = |∆e2| = κ(s)∆s . (24)

And we also have

∆p ≡ p(s′)− p(s) ≈
(
p(s) + p′(s)∆s

)
− p(s) = p′(s)∆s =⇒ |p(s′)− p(s)| = |∆p| = ∆s .

(25)

Therefore, in the local region, the ratio of the length between two points on the Gauss circle and curve,
i.e., |∆e2|/|∆p| can be calculate by

|e2(s′)− e2(s)|
|p(s′)− p(s)|

=
|∆e2|
|∆p|

=
κ(s)∆s

∆s
= κ(s) , (26)

which measure the curvature of a curve, κ(s), at the neighborhood of a local point p.
According to the example of circle, we assume a vector q = p+re2 = p+(1/κ)e2. The derivative

of q is

q′ = p′ +
1

κ
e′2 = e1 +

1

κ
(−κe1) = 0 , (27)

which means that q is fixed, i.e., q is the center of the osculating circle with radius 1/κ. By considering
the Gauss map of a circle. The radius vector should be e2 and the center c of Gauss circle corresponds
to the point q of the osculating circle which is the circle itself. Thus, the Gauss circle can be imaged
by rescaling the radius of osculating circle to unity.

Example (Curvature of ellipse). An ellipse is described by p(t) =
(
x(t), y(t)

)
with the

parametrization of the coordinates x(t) = a cos t and y(t) = b sin t (a > b > 0), i.e.,

x2

a2
+
y2

b2
= cos2 t+ sin2 t = 1 . (28)

Figure 4: An ellipse.
The tangent vector is

ṗ(t) =
(
− a sin t, b cos t

)
(29)

By changing the parameter to s, we have to calculate ds/dt first:

ds

dt
= |ṗ| =

√
a2 sin2 t+ b2 cos2 t =⇒ dt

ds
=

1√
a2 sin2 t+ b2 cos2 t

=
1

ṡ
. (30)

Therefore, the tangent vector parametrized by s is obtained by

e1 = p′ =
dp
dt

dt

ds

=

(
−a sin t√

a2 sin2 t+ b2 cos2 t
,

b cos t√
a2 sin2 t+ b2 cos2 t

)
=

(
−a sin t

ṡ
,
b cos t
ṡ

)
, (31)
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Subsequently, we have

e2 =
(
−b cos t

ṡ
,
−a sin t

ṡ

)
. (32)

However

e′1 =
de1
ds

=
de1
dt

dt

ds
= κe2 . (33)

As a result, the curvature is

κ(t) =
ab

(a2 sin2 t+ b2 cos2 t)3/2
. (34)

If we consider the particular case of a = b, an ellipse reduce to a circle with curvature κ = 1/a.

2 Curve in E3

In E3, a curve is parametrized as p(t) =
(
x(t), y(t), z(t)

)
and we have to look for an orthonormal

frame at p denoted by (p; e1, e2, e3) The vector e1 = p′ is uniquely defined by the same way. Due
to e′1 ⊥ e1, vector e′1 should be proportional to e2 or e3. Now we can fix e′1 = κe2 as the previous
section.

Binormal vector Now we define a unit vector orthogonal to T and N called binormal vector

B := T ∧N

≡ e1 ∧ e2 := e3 , (35)

where ∧ is the exterior product or wedge product.

Remark. In 3-dimensional space, the exterior product ∧ is the same to the usual cross product ×
of two vectors.

By orthonormality condition ei · ej = δij (i, j = 1, 2, 3), we have

e′i · ej + ei · e′j = 0 , (36)

which implies:
(i) If i = j, we have e′i ⊥ ei, e′2 should be the combination of e1 and e3.
(ii) If i ̸= j, we have{

0 = e′1 · e2 + e1 · e′2 = (κe2) · e2 + e1 · e′2 = κ+ e1 · e′2 (i = 1, j = 2) ,

0 = e′1 · e3 + e1 · e′3 = (κe2) · e3 + e1 · e′3 = 0 + e1 · e′3 (i = 1, j = 3) .

(37a)
(37b)

Therefore, with the result (37a), we have to assume that

e′2 = −κ(s)e1 + τ(s)e3 . (38)

By comparing to (13d), it contains an additional term related to e3. For i = 2, j = 3, we obtain

0 = e′2 · e3 + e2 · e′3 = (−κe1 + τe3) · e3 + e2 · e′3 = τ + e2 · e′3 . (39)
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Due to (i) and (37b), e′3 should be perpendicular to e1 and e3. As a result, we obtain the unique solution
that

e′3 = −τe2 , (40)

where τ(s) is called torsion of a curve p(s). The geometric meaning of torsion is that it make the
point of the curve leave for the osculating plane spanned by e1 and e2.

Remark. Apparently, the torsion of a curve is always related to the binormal vector B ≡ e3.

Frenet-Serret formula in 3D As a result, we have Frenet-Serret formula:
p′ = +e1
e′1 = +κe2
e′2 = −κe1 +τe3
e′3 = −τe2

=⇒


p′

e′1
e′2
e′3

 =


1 0 0

0 κ 0

−κ 0 τ

0 −τ 0


e1e2
e3

 . (41)

Remark. If one defines B := N ∧T , then one should assume e′2 = −κ(s)e1 − τ(s)e3 and obtain
e′3 = +τe2.

Parametrization of a curve in a neighborhood of s0 One can do the Taylor expansion of p(s) at s0.

• First order:

p(s) ≈ p(s0) +
dp
ds

∣∣∣∣
s=s0

(s− s0) = p(s0) + e1(s0)(s− s0) . (42)

• Second order:

p(s) ≈ p(s0) + p′(s0)(s− s0) +
1

2!
p′′(s0)(s− s0)

2

= p(s0) + e1(s0)(s− s0) +
1

2
κ(s0)e2(s0)(s− s0)

2 . (43)

• Third order:

p(s) ≈ p(s0) + p′(s0)(s− s0) +
1

2!
p′′(s0)(s− s0)

2 +
1

3!
p′′′(s0)︸ ︷︷ ︸

p′′′=(p′′)′=κ′e2+κe′2=κ′e2+κ(−κe1+τe3)

(s− s0)
3

= p(s0) + e1(s0)(s− s0) +
1

2
κ(s0)e2(s0)(s− s0)

2

+
1

6

(
− κ2(s0)e1(s0) + κ′(s0)e2(s0) + κ(s0)τ(s0)e3(s0)︸ ︷︷ ︸

leading term

)
(s− s0)

3 . (44)

We only consider the leading term in the third order expansion, then we have

p(s) ≈ p(s0) + e1(s0)(s− s0) +
1

2
κ(s)e2(s0)(s− s0)

2 +
1

6

(
κ(s0)τ(s0)e3(s0)

)
(s− s0)

3 .

(45)
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Example (Helix in E3). A helix is parametrized as p =
(
x(t), y(y), z(t)

)
with

x(t) = a cos t ,
y(t) = a sin t ,
z(t) = bt .

(46)

The tangent vector and the corresponding norm are

ṗ =
(
ẋ, ẏ, ż

)
=
(
− a sin t, a cos t, b

)
(47)

and

|ṗ| =
√
a2 sin2 t+ a2 cos2 t+ b2 =

√
a2 + b2 = ṡ . (48)

The relation of s and t can be obtained by

s(t) =

∫ t

0

ds

dt′
dt′ =

∫ t

0

√
a2 + b2 dt′ := ct =⇒ t =

s

c
. (49)

Figure 5: A helix.
Subsequently, we have tangent vector

e1 = p′ =

(
− a

c
sin

s

c
,
a

c
cos

s

c
,
b

c

)
(50)

and

e′1 = p′′ =

(
− a

c2
cos

s

c
,− a

c2
sin

s

c
, 0

)
. (51)

So the curvature is

κ = |e′1| =
a

c2
=

a

a2 + b2
. (52)

and the normal vector can be obtained by

e′1 = κe2 =⇒ e2 =
(
− cos

s

c
,− sin

s

c
, 0

)
. (53)
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Finally, we have binormal vector

e3 = e1 ∧ e2 =
(
b

c
sin

s

c
,−b

c
cos

s

c
,
a

c

)
. (54)

Due to

e′3 =
(
b

c2
cos

s

c
,
b

c2
sin

s

c
, 0

)
, (55)

we can calculate the torsion of p(s) form (40):

τ =
b

c2
=

b

a2 + b2
. (56)

3 Surface theory in E3

We consider a 2-dimensional surface M in E3, we parametrize the surface by two variables u and v
written as p(u, v) =

(
x(u, v), y(u, v), z(u, v)

)
.

Remark. If the point p(u, v) moves along u direction, i.e., parametrized by u only, we call the
trajectory u-curve. The infinitesimal vector along u is

∆p|u = p(u+∆u, v)− p(u, v) ≈ p(u, v) +
∂p(u, v)
∂u

∆u− p(u, v) = pu∆u . (57)

Similarly, we have v-curve along v direction and

∆p|v ≈ pv∆v . (58)

Therefore, we have

∆p ≈ pu∆u+ pv∆v . (59)

Figure 6: A surface.

Tangent vector The differential of p is

dp = (dx, dy, dz) (60)

with

dx =
∂x

∂u
du+

∂x

∂v
dv = xudu+ xvdv ,

dy =
∂y

∂u
du+

∂y

∂v
dv = yudu+ yvdv ,

dz =
∂z

∂u
du+

∂z

∂v
dv = zudu+ zvdv ,

(61)

where xu := ∂x/∂u. Therefore, we can write dp
as

dp =
∂p
∂u
du+

∂p
∂v
dv := pudu+ pvdv , (62)
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where {
pu := (xu, yu, zu)

pv := (xv, yv, zv)
(63)

are called velocity vectors along u and v respectively.

Remark. The vector p in E3 in the Cartesian coordinate system can be written as

p = x i+ y j+ z k := xaδa (a = 1, 2, 3) , (64)

where {δa} is a fixed reference frame of E3. So that we have differential

dp = (dxa)δa + xa(dδa) . (65)

Because δa is fixed, i.e. dδa = 0, it leads to the differential of p

dp = (dxa)δa = (dx, dy, dz) . (66)

The general situation for non-fixed frame in space Mn will be discussed in the Sec. 4 of moving
frame.

Tangent space We call a space spanned by pu and pv at point p a tangent space denoted by TpM.

Supplement (Tangent bundle). In tangent space with dimension 2, a vector V has a generalized
coordinate transformation GL(2;R), which is ũi = ũi(u) and gives the transformation for vector

V = V ipi =
‹V jp̃j . (67a)

The transformation of the basis and components are given by
p̃j(ũ) =

∂ui

∂ũj
pi(u) (Pushforward) ,

V i(u) = ‹V j(ũ)
∂ui

∂ũj
(Pullback) ,

(67b)

(67c)

where

(J)ij :=
∂ui

∂ũj
(68)

is an element of the Jacobian matrix J of the general linear transformation GL(2;R). The map
pushforward (pullback) means that the covariant (contravariant) quantities expressed in new (old)
coordinate system under the generalized coordinate transformation from old (new) coordinate
system.

We can collect all pairs of the points p on M and their corresponding tangent space TpM. A
tangent bundle TM is defined by the collection of TpM, i.e.,

TM =
∪
p∈M

TpM . (69)

A tangent bundle TM is a vector bundle denoted by (E,M, π), which is a special fibre bundle
with
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• base space B: M;
• standard (typical) fibre F over p (an object defined at p): TpM;
• total space E: a collection of all TpM;
• bundle projection π (an element u of bundle is projected by the fibre to the corresponding

point p): π(u) = p for u ∈ TM;
• structure group G: GL(2;R);
• transition function tij: Jacobian matrix J of GL(2;R),

and we call Ep = π−1(p) the fibre of E over point p.

First fundamental (quadratic) form we define

I := dp · dp (70a)
= pu · pu︸ ︷︷ ︸

E

dudu+ 2 pu · pv︸ ︷︷ ︸
F

dudv + pv · pv︸ ︷︷ ︸
G

dvdv

= E dudu+ 2F dudv +Gdudv (70b)

=
(
du dv

)(E F
F G

)(
du
dv

)
. (70c)

called the first fundamental form or metric tensor of surface M, which is a symmetric quadratic form
rather than an exterior 2-form.

Remark. In the case of F = 0, the first fundamental form is

I = E dudu+Gdvdv (71a)

=
(
du dv

)(E 0
0 G

)(
du
dv

)
. (71b)

In such case, we call (u, v) an isothermal coordinates if E = G. Therefore, the component of
metric is

gij = E δij with E = pi · pi = |pi|2 > 0 , (72)

and we say that gij is conformally equivalent to δij , which preserved the angle between any two
vectors. Because δij gives the flat space, we say that gij is conformally flat.

We consider a curve on the surface, that means u and v should be parametrized by one variable t,
i.e., u = u(t) and v = v(t). The curve p(t) = p

(
u(t), v(t)

)
. The tangent vector is obtained by

ṗ =
∂p
∂u

du

dt
+
∂p
∂v

dv

dt
= puu̇+ pvv̇ , (73)

and the corresponding norm is

|ṗ| =
√
Eu̇2 + 2Fu̇v̇ +Gv̇2 . (74)
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We would like to calculate the arc length of a curve by

s =

∫
ds =

∫
|ṗ| dt (75)

=

∫ √
Edu2 + 2Fdudv +Gdv2︸ ︷︷ ︸√

ds2

(76)

=

∫ √
Eu′2 + 2Fu′v′ +Gv′2︸ ︷︷ ︸

1

ds =

∫
|p′| ds . (77)

Therefore, we have

|p′| = 1 . (78)

We would alwalys write the first fundamental form with u = u1 and v = u2 as

I ≡ ds2 ≡ g = gijdu
iduj (i, j = 1, 2) , (79)

where

gij = pi · pj −→
(
E F
F G

)
(80)

is the metric tensor represented as a 2× 2 matrix on the surface M. The inverse of gij is defined by

gkigij = δkj . (81)

Remark. The first fundamental form describes the distance of two points on the surface M, which
gives the intrinsic structure of M.

Supplement (Induced metric). We can regard p as a set of functions defined on the surface M,
the differential of p is actually an infinitesimal tangent vector laid on M

dp =
∂p
∂u
du+

∂p
∂v
dv =

(
du

∂

∂u
+ dv

∂

∂u

)
p = (dui∂i)p , (82)

which can be identified as differential operator dui∂i act on a set of functions p. In abbreviated
notation, we have

dp = dui∂i = dui ⊗ ∂i := ϑ (pi −→ ∂i) , (83)

where we use ∂i to abbreviate the basis vector pi = ∂ip, i.e., the vector ∂i should be regarded as a
differential operator act on some functions. Here we callϑ = dp the canonical 1-form or soldering
form, which is a vector-valued 1-form (1-form carries a vector). For any vector V = V k∂k on
M, we apply ϑ on V and obtain

ϑ(V ) = V kdui(∂k)∂i = V kδik∂i = V i∂i = V . (84)

It is apparent that ϑ is an identity map for a vector.
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Now we will define the general inner product for two basis vectors ∂i and ∂j instead of dot
product as

g(∂i, ∂j) := gij . (85)

Therefore, for any two vectors V = V i∂i and W = W j∂j on M, we have

g(V ,W ) = g(V i∂i,W
j∂j) = V iW jg(∂i, ∂j) = V iW jgij = VjW

j = V iWi . (86)

In general we also have

ḡ(∂a, ∂b) := ḡab , (87)

where

∂a :=
∂

∂xa
(a, b = 1, 2, 3) . (88)

We call {xa} the Gauss normal coordinates or synchronous coordinates if ḡi3 = 0 and ḡ33 = 1,
i.e., ∂3 is an unit normal vector of M, which is proportional to n.

Furthermore, we can define a metric tensor

ḡ = ḡabdx
adxb = δabdx

adxb = ds2 (89)

as a line inteval of E3, and it is clear that ḡi3 is one of the component of ḡ. If we assume that
x1 = x = x(u, v), x2 = y = y(u, v) and x3 = z = z(u, v) on M. We have basis vectors ∂

∂ui

spanned by ∂
∂xa as

∂

∂u
=
∂x

∂u

∂

∂x
+
∂y

∂u

∂

∂y
+
∂z

∂u

∂

∂z
=
∂xa

∂u

∂

∂xa
,

∂

∂v
=
∂x

∂v

∂

∂x
+
∂y

∂v

∂

∂y
+
∂z

∂v

∂

∂z
=
∂xa

∂v

∂

∂xa
,

=⇒ ∂

∂ui
=
∂xa

∂ui
∂

∂xa
:= hai

∂

∂xa
, (90)

where hai is a projection operator of the vector in E3 and i, j = 1, 2. The component of metric
tensor g of M can be given by

gij = g

(
∂

∂ui
,
∂

∂uj

)
≡ ḡ

(
hai

∂

∂xa
, hbj

∂

∂xb

)
= haih

b
j ḡ

(
∂

∂xa
,
∂

∂xb

)
= haih

b
j ḡab , (91)

which is the projection of ḡab ofE3 ontoM. We can define an projection operationP of differential
dxa in E3 onto M which is called the pullback (a map for contravariant quantities) of 1-form dxa:

P(dxa) =
∂xa

∂ui
dui = haidu

i , (92)

i.e., P(dxa) can be spanned by dui on M. As a consequence, a line inteval ds2
∣∣
M = P(ḡ) on M

is obtained by

P(ḡ) = P(ḡabdxadxb) = ḡab
(
haih

b
jdu

iduj
)
=
(
ḡabh

a
ih

b
j

)
duiduj := gijdu

iduj = g = I . (93)

Therefore, the first fundamental form I = g = ds2
∣∣
M of M can be regarded as a projection of

metric tensor ḡ with

gij := ḡabh
a
ih

b
j = ḡab

∂xa

∂ui
∂xb

∂uj
. (94)

We called that g is a induced metric obtained by the pullback of ḡ.
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Supplement (Interior product). We define an anti-derivation on exterior differential p-forms ω for
a vector X called interior product with respect to X . It sends an exterior p-form to an exterior
(p− 1)-form. We consider an 1-forms ω, the interior product of ω with respect to a vector X is

ιXω
or
= X⌋ω := ω(X)

= X iωjdu
j(∂i) = X iωjδ

j
i = Xjωj .

(95a)
(95b)

Therefore, we have

ι∂i(du
j) = duj(∂i) = δji . (96)

We note that:
• For 0-form f (a scalar), the interior product is vanished ιXf = 0 because of no (−1)-form.
• The second action of ι2X = 0. It can be shown that by considering an exterior 3-form ω =
(1/3!)ωijkdu

i ∧ duj ∧ duk, we have vanished second interior product by X

ι2Xω = ιXιX

(
1

3!
ωijkdu

i ∧ duj ∧ duk
)

= ιX

(
1

3!
Xkωijk

(
dui(∂l)du

j ∧ duk

+ (−1)1dui ∧ duj(∂l)duk + (−1)2dui ∧ dujduk(∂l)
))

= ιX

(
1

3!
X l
(
ωljkdu

j ∧ duk − ωilk︸︷︷︸
−ωlik

dui ∧ duk + ωijl︸︷︷︸
+ωlij

dui ∧ duj
))

= ιX

(
1

2
X lωljkdu

j ∧ duk
)

= XmX l

(
1

2
ωljk

(
duj(∂m)du

k + (−1)1dujduk(∂m)
))

= XmX l

(
1

2
ωlmkdu

k − ωljm︸︷︷︸
−ωlmj

duj
)

=

symmetric in l,m︷ ︸︸ ︷
XmX l ωlmk︸︷︷︸

anti-symmetric in l,m

duk = 0 . (97)

However, ιY ιX ̸= 0, e.g. the interior product of an exterior 3-form ω by X and Y should
be an 1-form Y mX lωlmkdu

k ̸= 0.

Supplement (Isomorphism between tangent and cotangent space). The 1-form dui is defined on
the cotangent space which is dual to the basis ∂

∂ui ≡ ∂i on the tangent space. We can define a linear
map ψ : TM −→ T ∗M. For vectors X,Y ∈ TM and α ∈ T ∗M the 1-form corresponding to
vector X , then we define

⟨α,Y ⟩ := α(Y ) = ιY α = g(X,Y ) , (98)

where the ⟨•, •⟩with two slots is a kind of inner product defined between the tangent and cotangent
space and

α := ψ(X) . (99)
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Therefore, we can also write the corresponding 1-form α as

α(•) = g(X, •) , (100)

which can be recognized by

α :=
1

2
gij
(
dui(X)duj + duiduj(X)

)
=

1

2
gijX

k
(
dui(∂k)du

j + duiduj(∂k)
)

=
1

2
gijX

k
(
δikdu

j + duiδjk
)

= Xidu
i . (101)

By choosing vector X = ∂i, we have an 1-form ψ(∂i) = ψijdu
j , which leads to

gij = g(∂i, ∂j) = ⟨ψ(∂i), ∂j⟩ = ψik ⟨duk, ∂j⟩ = ψikδ
k
j = ψij . (102)

Therefore, we have

ψ(∂i) = gijdu
j := dui (103)

called the reciprocal basis of dui in T ∗M. It is apparent that gij transforms dui to its reciprocal
basis duj .

In addition, we have a linear inverse map ψ−1 : T ∗M −→ TM such that

X = ψ−1(α) := φ(α) . (104)

For α = dui, the inverse map of dui can be written as ψ−1(dui) = φij∂j . If we take α = dui and
Y = ∂j in (98), then

δij = dui(∂j) = g
(
φik∂k, ∂j

)
= φikg

(
∂k, ∂j

)
= φikgkj , (105)

therefore, φik = gik and

ψ−1(dui) = gij∂j := ∂i (106)

is the reciprocal basis of ∂i. We assume that β = ψ(Y ) and define the inner product in T ∗M
which is also denoted by g

g(α, β) := g
(
ψ−1(α), ψ−1(β)

)
. (107)

The definition leads to the following relation by choosing α = dui and β = duj

g(dui, duj) = g
(
ψ−1(dui), ψ−1(duj)

)
= g
(
∂k, ∂j

)
= gikgjlg

(
∂k, ∂l

)
= gij . (108)

Now we can clearly express a vector X = X i∂i as an inverse map ψ−1 of an 1-form α with
the help of (106):

X = X i∂i = X igij∂
j = Xj∂

j︸ ︷︷ ︸
a vector!

= Xjψ
−1(duj) = ψ−1(Xjdu

j︸ ︷︷ ︸
an 1-form!

) = ψ−1(α) . (109)

As a result, we conclude that the metric tensor g (not component gij or gij) turns a vector (1-form)
into a 1-form (vector). The component of metric tensor gij (gij) transforms the a vector ∂i (1-form
dui) to its corresponding reciprocal basis ∂i (dui).
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Normal vector of the surface We would like to look for an orthonormal frame (p; e1, e2, e3) of M.
Under the Gram-Schmit procedure, we can define

e1 :=
pu

|pu|
(110)

and

e2 :=
pv − (pv · e1)e1
|pv − (pv · e1)e1|

. (111)

Therefore, we have

e3 = e1 ∧ e2 := n , (112)

which is an unit normal vector of M.
The unit normal vector n = n(u, v) can also be obtained by

n(u, v) =
pu ∧ pv

|pu ∧ pv|
. (113)

The corresponding differential dn is

dn =
∂n
∂u
du+

∂n
∂v
dv = nudu+ nvdv . (114)

However, we have:
(i) n ⊥ pu =⇒ n · pu = 0, which have the equations of the partial derivative with respect to u and
v are {

∂u : nu · pu + n · puu = 0 =⇒ n · puu = −nu · pu := L ,

∂v : nv · pu + n · puv = 0 =⇒ n · puv = −nv · pu :=M .

(115a)
(115b)

(ii) n ⊥ pv =⇒ n · pv = 0, we obtain{
∂u : nu · pv + n · pvu = 0 =⇒ n · pvu = −nu · pv :=M ,

∂v : nv · pv + n · pvv = 0 =⇒ n · pvv = −nv · pv := N .

(116a)
(116b)

Second fundamental (quadratic) form According to (62) and (114), we can define a quadratic
form

II := −dp · dn (117a)
= −(pudu+ pvdv)(nudu+ nvdv)

= −(pu · nu dudu+ pu · nv dudv + pv · nu dudv + pv · nv dvdv)

= n · puu︸ ︷︷ ︸
L

dudu+ n · puv︸ ︷︷ ︸
M

dudv + n · pvu︸ ︷︷ ︸
M

dudv + n · pvv︸ ︷︷ ︸
N

dvdv

= Ldudu+ 2M dudv +N dudv (117b)

=
(
du dv

)(L M
M N

)(
du
dv

)
(117c)

called the second fundamental form of M. We define the second fundamental form as a tensor given
by

II = bijdu
iduj (118)
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with the component of matrix form as

bij = n · pij = −pi · nj −→
(
L M
M N

)
. (119)

Remark. The second fundamental form describes the shape of M and how the surface M embed-
ded in E3. It is an extrinsic property of M and we call the component bij the extrinsic curvature.

Now we would like to discuss decomposition formulas of the derivative vector of frame (p;pu,pv,n).
We follow the principle:

• Any vector in the space can be spanned by the basis pu, pv and n.

Gauss formulas We take the partial derivative of pu and pv with respect to u and v:

puu :=
∂

∂u
pu = (Γu)

u
u pu + (Γu)

v
u pv + (Γu)

n
u n

= (Γu)
u
u pu + (Γu)

v
u pv + (puu · n︸ ︷︷ ︸

L

)n ,

puv :=
∂

∂v
pu = (Γu)

u
v pu + (Γu)

v
v pv + (Γu)

n
v n

= (Γu)
u
v pu + (Γu)

v
v pv + (puv · n︸ ︷︷ ︸

M

)n ,

pvu :=
∂

∂u
pv = (Γv)

u
u pu + (Γv)

v
u pv + (Γv)

n
u n

= (Γv)
u
u pu + (Γv)

v
u pv + (pvu · n︸ ︷︷ ︸

M

)n ,

pvv :=
∂

∂v
pv = (Γv)

u
v pu + (Γv)

v
v pv + (Γv)

n
v n

= (Γv)
u
v pu + (Γv)

v
v pv + (pvv · n︸ ︷︷ ︸

N

)n .

(120a)

(120b)

(120c)

(120d)

We call these set of equations the Gauss formulas. We identify the coefficients

(Γa)
c
b ≡ Γc

ab , (121)

e.g., (Γn)
u
v = Γ1

n2, then Gauss formulas (120) can be written as

pij = Γk
ijpk + Γn

ijn = Γk
ijpk + bijn (i, j, k = 1, 2) , (122)

where the coefficients are obtained by

Γkij = Γl
ijglk = Γl

ijpl︸ ︷︷ ︸
pij−bijn

·pk = pij · pk (123)

and

bij = Γn
ij = n · pij . (124)

We note that Γkij and bij are symmetric in i, j.
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Remark. The vectors dp and dpi in terms of the differential form are given by

dp = (dui∂i)p = dui pi (125)

and

dpi = d(∂ip) = duj(∂j∂ip) = duj(Γk
ijpk + bijn) := Γk

ipk + bin = Γk
ipk + Γn

in (126)

respectively, where Γk
i := Γk

ijdu
j is called connection form and bi := bijdu

j = Γn
ijdu

j = Γn
i.

Weingarten formulas Due to n · n = 1, we have{
∂u : nu · n = 0 =⇒ nu ⊥ n ,
∂v : nv · n = 0 =⇒ nv ⊥ n .

(127a)
(127b)

Therefore, nu and nv do not contain the component of n. We can assume that{
nu = Apu +B pv = (Γn)

u
u pu + (Γn)

v
u pv ,

nv = C pu +D pv = (Γn)
u
v pu + (Γn)

v
v pv ,

(128a)
(128b)

which is called the Weingarten formulas. We calculate the inner product of nu · pu and nu · pv:{
nu · pu = −L = EA+ FB

nu · pv = −M = FA+GB
=⇒ A =

FM −GL

EG− F 2
and B =

FL− EM

EG− F 2
. (129)

Similarly, we have

C =
FN −GM

EG− F 2
and D =

FM − EN

EG− F 2
. (130)

The Weingarten formulas (128) can be written by

nj = Γk
njpk , (131)

where the coefficients can be calculated by

−bij = pi · nj = pi ·
(
Γl

njpl

)
= gilΓ

l
nj = Γinj =⇒ Γk

nj = gkiΓinj = −gkibij := −bkj .
(132)

As a result, we obtain

nj = −bkjpk . (133)

Remark. The Weingarten formula written in the differential form is given by

dn = (−bkjduj)pk = −bkpk := Γk
npk (134)
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Acceleration (curvature) vector We have an acceleration (curvature) vector p′′(s) parametrized
by s, which can be decomposed by tangential and normal parts

p′′ = p′′
t + p′′

n := κg + κn , (135)

where the tangential part κg = κgt and normal part κn = κnn are called geodesic curvature and
normal curvature respectively.

Remark. We can identify p′′ := a the acceleration vector, therefore, (135) can be read as a =
aT + aN with the tangent acceleration vector aT := p′′

t and normal acceleration vector aN := p′′
n.

According to (11), we have p′′ · p′ = 0. We would like to discuss the geodesic curvature, we take
the inner product of p′′

t with n and p′ respectively:{
p′′
t · n := 0 ,

p′′
t · p′ :=

(
p′′
t + p′′

n

)
· p′ = p′′ · p′ = 0 ,

=⇒ p′′
t ∝ t := n ∧ p′ , (136)

then we can have p′′
t = κgt = κg(n ∧ p′).

Normal curvature of a curve We would like to discuss normal curvature first, and define κn =
κnn, so

κn = κn · n = (p′′ − κg) · n = p′′ · n− κg · n︸ ︷︷ ︸
0

. (137)

However we also have

p′ · n = 0 =⇒ p′′ · n+ p′ · n′ = 0 . (138)

Therefore, κn can be calculated by

κn = −p′ · n′

= −(puu
′ + pvv

′) · (nuu
′ + nvv

′)

= Lu′u′ + 2M u′v′ +N v′v′ . (139)

However p′ = dp/ds and n′ = dn/ds, which leads to

κn = −dp
ds

· dn
ds

=
−dp · dn
ds2

=
II
I
. (140)

Remark. We have the norm of tangent vector

1 = |p′| = Eu′u′ + 2Fu′v′ +Gv′v′ =
I
ds2

. (141)

According to (83)

p′ =
dp
ds

=
dui

ds
∂i = ui ′∂i , (142)
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we have

I(p′,p′) = gkldu
kdul(p′,p′)

= gklu
i ′uj ′duk(∂i) du

l(∂j)

= gklu
i ′uj ′δki δ

l
j

= giju
i ′uj ′ (143a)

= Eu′u′ + 2Fu′v′ +Gv′v′ = 1 . (143b)

Similarly,

II(p′,p′) = biju
i ′uj ′ (144a)

= Lu′u′ + 2M u′v′ +N v′v′ = κn . (144b)

We finally obtain

κn =
II(p′,p′)

I(p′,p′)
= II(p′,p′) . (145)

We assume that κn has value of λ, which gives the relation

II = λI . (146)

One can divide (146) by ds2 and then obtain

II
ds2

= λ
I
ds2

=⇒ Lu′u′ + 2M u′v′ +N v′v′ = λ
(
Eu′u′ + 2Fu′v′ +Gv′v′

)
, (147)

where λ can be recognized as the Lagrangian multiplier with constraint Eu′u′+2Fu′v′+Gv′v′ = 1.
By looking for the extrema λ of κn = II/ds2, we take the partial derivative of (147) with respect to
ui ′, which leads to the equation of matrix form(

L M
M N

)(
u′

v′

)
= λ

(
E F
F G

)(
u′

v′

)
=⇒

(
L− λE M − λF
M − λF N − λG

)(
u′

v′

)
= 0 , (148)

which means

(bij − λgij)u
j ′ = 0 . (149)

We have to look for the non-trivial solutions, i.e.,

det(bij − λgij) = 0 ,

=⇒
(
EG− F 2

)
λ2 −

(
EN +GL− 2FM

)
λ+ LN −M2 = 0 ,

=⇒ gλ2 −
(
EN +GL− 2FM

)
λ+ b = 0 , (150)

where we define {
g := det(gij) = EG− F 2 ,

b := det(bij) = LN −M2 .

(151a)
(151b)

As a result, we have the sum and product of two solutions λ1 and λ2

λ1 + λ2 =
EN +GL− 2FM

g
and λ1λ2 =

b

g
. (152)
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Gauss curvature We define the Gauss curvature (or called total curvature) as product of two cur-
vatures:

K := λ1λ2 =
b

g
. (153)

Mean curvature The mean curvature is defined by the mean value of sum of two curvatures:

H :=
1

2
(λ1 + λ2) =

EN +GL− 2FM

2 g
. (154)

Remark. The value λα (α = 1, 2) is called the principal curvature of κn. By substituting λα
into the equation (149), the corresponding solution of vector p′

(α) = uj ′(α)pj or dp(α) = duj(α)pj is
called the principal direction.

Example (Cylindrical surface in E3). A surface parallel with z-axis can be described by

p =
(
x, y, z

)
=
(
x(u), y(u), v

)
=⇒ dp =

(
dx, dy, dz

)
=
(
x′du, y′du, dv

)
. (155)

A cylindrical surface need to have a constraint with(
dx

du

)2

+

(
dy

du

)2

= x′ 2 + y′ 2 = 1 . (156)

Figure 7: A cylinder.
A cylinder is parametrized by

p(u, v) =
(
x(u), y(u), v

)
=⇒ dp = pudu+ pvdv =

(
x′du, y′du, dv

)
, (157)

where {
pu =

(
x′du, y′du, 0

)
,

pv =
(
0, 0, 1

)
.

=⇒ pu ∧ pv =
(
y′,−x′, 0

)
. (158)

and the normal vector is

n =
pu ∧ pv

|pu ∧ pv|
=

1

y′2 + x′2
(
y′,−x′, 0

)
=
(
y′,−x′, 0

)
(159)
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and

dn = nudu+ nvdv =
(
y′′du,−x′′du, 0

)
. (160)

with {
nu =

(
y′′,−x′′, 0

)
,

nv =
(
0, 0, 0

)
.

(161)

Then we have first fundamental form

I = dp · dp =
(
x′2 + y′2

)
du2 + dv2 = du2 + dv2 , (162)

where

E = G = 1, F = 0 . (163)

The second fundamental form can be obtained by

II = −dp · dn
= −(pu · nu dudu+ pu · nv︸ ︷︷ ︸

0

dudv + pv · nu︸ ︷︷ ︸
0

dudv + pv · nv︸ ︷︷ ︸
0

dvdv)

= −
(
x′y′′ − y′x′′

)
du2

=
(
y′x′′ − x′y′′

)
du2 , (164)

where

L = y′x′′ − x′y′′, M = N = 0 . (165)

So we have

g = 1 , b = 0 , EN +GL− 2FM = y′x′′ − x′y′′ . (166)

As a result, we obtain

Gauss curvature: K = λ1λ2 = 0, (167)

mean curvature: H =
1

2

(
λ1 + λ2

)
=

1

2

(
y′x′′ − x′y′′

)
. (168)

We can solve the above equations to obtain

λ1 = 0, and λ2 = y′x′′ − x′y′′ . (169)

Geodesic equations The tangent vector parametrized by s is

p′(s) = piu
i ′ , (170)
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it leads to the acceleration vector is given by

p′′ = p′
iu

i ′ + piu
i ′′

=
(
Γk

ijpk + bijn
)
ui ′uj ′ + piu

i ′′

=
(
uk ′′ + Γk

iju
i ′uj ′

)
pk + biju

i ′uj ′n (171)
= p′′

t + p′′
n (172)

= κg + κn , (173)

where we have used p′
i = pij(du

j/ds) = (Γk
ijpk + bijn)uj ′. Now we call the curve p(s) geodesic if

p′′ = p′′
n = κn, i.e., the tangential part is vanished

κg = p′′
t =

(
uk ′′ + Γk

iju
i ′uj ′

)
pk = 0 , (174)

which means that
p only has the normal curvature κn.

Because pks are linear independent, we obtain

uk ′′ + Γk
iju

i ′uj ′ = 0 , (175)

which is called geodesic equations.

Supplement (Connection and geodesic). We have differential of p′ given by

dp′ = dpiu
i ′ + pidu

i

=
(
Γk

ipk + bin
)
ui ′ + pidu

i ′

=
(
duk ′ + Γk

iu
i ′)pk + biu

i ′n , (176)

i.e., the symbol d is a total or absolute differential with respect to frame (p;p1,p2,n) on E3. The
total or absolute differentiation means that we have to differentiate not only the component ui ′ but
also the basis pi of a vector p′. We assume that p′ can be written as

p′ = ui ′∂i := V i∂i = V . (177)

Then (176) can be written as

dV =
(
dV k + Γk

iV
i
)
∂k + biV

in . (178)

and the geodesic equation becomes as(
dV k + Γk

iV
i
)
∂k = 0 . (179)

We define the connectionD = dui⊗Di on M, which act on the function V i and basis ∂i are{
DV i = dV i = duj ⊗ ∂jV

i ,

D∂i = Γk
i ⊗ ∂k = duj ⊗ Γk

ij∂k ,

(180a)
(180b)

respectively. We note that D act on a function as a differential d on a function. The connection
act on a vector is given by

DV =
(
DV i

)
⊗ ∂i + V i

(
D∂i

)
= dV i ⊗ ∂i + V iΓk

i ⊗ ∂k =
(
dV k + Γk

iV
i︸ ︷︷ ︸

(DV )k

)
⊗ ∂k . (181)
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The resulting geodesic equation (179) can be read as

DV = 0 . (182)

Therefore, (178) can also written as

dV = dV ⊤ + dV ⊥ = DV + biV
in , (183)

where ⊤ is the orthogonal projection onto the space spanned by {∂k} and ⊥ means the normal
component. If there is no normal space M⊥ of M, the differential

dV = DV (184)

would be the total or absolute differential of a vector V on surface M. We can multiply 1/duj to
the DV :

1

duj
DV =

1

duj
(
dV k + Γk

iV
i
)
∂k

=
1

duj
(
dV k + Γk

ildu
lV i
)
∂k

=
(
∂jV

k + Γk
il
dul

duj︸︷︷︸
δlj

V i
)
∂k

=
(
∂jV

k + Γk
ijV

i
)
∂k

:=
(
∇jV

k
)
∂k , (185)

where we define the component(
DV

)
j
k := ∇j V

k︸︷︷︸
component of V

= ∇∂jV
k = ∂jV

k + Γk
ijV

i (186)

called the covariant derivative of vector V k in ∂j direction. We note that the covariant derivatives
∇j act on the component of vector V k only.

It can also be recognized as a vector-valued 1-form DV act on a vector ∂j

DV (∂j) =
((
DV

)
i
kdxi ⊗ ∂k

)
(∂j) =

(
DV

)
i
k dxi(∂j)︸ ︷︷ ︸

δij

⊗∂k =
(
DV

)
j
k∂k . (187)

Now we will return to the discussion of the tangential part of acceleration (curvature) vector

aT := p′′
t =

(
dV

ds

)⊤

:=
DV

ds
=

1

ds
DV =

duj

ds

1

duj
DV

(185)
= V j

(
∇jV

k
)
∂k := akT∂k , (188)

which is the orthogonal projection of the acceleration vector p′′ onto the space spanned by {∂k}.
As a result, we have tangential acceleration with component

akT := V j∇jV
k , (189)

where

V j∇j = V j∇∂j = ∇V j∂j = ∇V . (190)
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So we can also write akT as

akT = ∇V V
k , (191)

which is called the covariant derivative of V k along the direction of V . Then, we call

akT = ∇V V
k = 0 or DV = 0 (192)

the parallel transport of tangent vector V , which is equivalent to the geodesic equation.

Remark. We would like to remind you the notation of the covariant dereivative in mathematics
and physics. Consider a vector V , the covariant dereivative (connection) (D orDj) of a full vector
V = V i∂i is

DV = duj ⊗Dj

(
V i∂i

)
= duj ⊗

(
∂jV

i︸︷︷︸
V i
,j

+V kΓi
kj

)
∂i := V i

;jdu
j ⊗ ∂i =

(
DV

)
j
iduj ⊗ ∂i .

(193)

We note that here DjV
i = ∂jV

i = V i
,j and Dj∂i = ∂kΓ

k
ij as shown in (180). In physics, we

always consider a vector represented by its component V i, the covariant dereivative (∇j) of a
vector V i should be

∇jV
i =

(
DV

)
j
i = V i

,j + V kΓi
kj ≡ V i

;j . (194)

Christoffel symbols According to (123), we can calculate the coefficients Γkij . Now we would
like to derive the coefficients in terms of gij , the components of first fundamental form I. We take the
partial derivative of gijwith respect to uk and then interchange the indices of the equations. Therefore,
we obtain 

∂

∂uk
gij = pik · pj + pi · pjk = Γjik + Γijk ,

∂

∂ui
gjk = Γkji + Γjki ,

∂

∂uj
gki = Γikj + Γkij .

(195a)

(195b)

(195c)

Remark. Equations of (195) gives the metric compatibility, which can be written as the covarinat
deriavative of gij

∇kgij = ∂kgij − Γl
ikglj − Γl

jkgli = 0 . (196)

We can define the non-metricity

Qkij := −∇kgij (197)

and (196) would be equivalent to the vanished non-metricity Qkij = 0.
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According to (344), which will be shown later that pi ̸= ∂ip in general, we have general case
that

0 ̸= pij − pji =
(
Djpi + bijn

)
−
(
Dipj + bjin

)
=
(
Γk

ij − Γk
ji

)
pk +

(
bij − bji

)
n . (198)

However, in (120), we have pij = ∂jpi = ∂j∂ip due to the globally fixed frame in E3, which will
be explained in the Sec. 4 by the reduction condition (345). Consequently, if we have

pij − pji = 0 . =⇒

{
Γk

ij = Γk
ji ,

bij = bji ,

(199a)
(199b)

which give the symmetric condition (torsion-free) for Γk
ij and bij .

By computing (195c)+(195b)−(195a), we obtain coefficients

Γkij =
1

2

(
∂

∂uj
gki +

∂

∂ui
gjk −

∂

∂uk
gij

)
(200)

and

Γk
ij = gklΓlij =

1

2
gkl
(

∂

∂uj
gli +

∂

∂ui
gjl −

∂

∂ul
gij

)
. (201)

Remark. According to (180b), the Γk
ij is also called the connection coefficients, or simply the

connection. Due to metric compatibility (196) and torsion-free (304a), the connection (200) or
(201) is a function of the metric tensor gij , we also call this kind of connection the Levi-Civita
connection or Riemannian connection. The Levi-Civita connection can also be denoted as{

Γkij(g) ≡ [ij, k] ,

Γk
ij(g) ≡

{
k
ij

}
,

(202a)
(202b)

which are called theChristoffel symbol of first and second kind respectively, in order to distinguish
the general connections.

Supplement (Torsion tensor). For general metric compatible connection, we always do not have
the symmetric property, i.e., Γk

ij ̸= Γk
ji. The connection would contain the symmetric and anti-

symmetric parts, which is shown as

Γk
ij =

1

2

(
Γk

ij + Γk
ji︸ ︷︷ ︸

symmetric in i,j

)
+

1

2

(
Γk

ij − Γk
ji︸ ︷︷ ︸

anti-symmetric in i,j

)
= Γk

(ij) + Γk
[ij] . (203)

We define the torsion tensor

T k
ji := Γk

ij − Γk
ji = 2Γk

[ij] (204)
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as the anti-symmetric part of the connection. We have to note that Γk
(ij) ̸=

{
k
ij

}
. The general

connection can be decomposed as

Γk
ij =

{
k
ij

}
+Kk

ij , (205)

and it leads to the relation

T k
ji = Kk

ij −Kk
ji , (206)

where Kk
ij is called the contorsion tensor. By permutatiing the indices of (206), it can be show

that the contorsion Kk
ij can be in terms of torsion tensor T k

ij as

Kk
ij := −1

2

(
T k

ij + T i
jk − T j

ki

)
= −1

2

(
T k

ij︸︷︷︸
anti-symmetric in i,j

+

symmetric in i,j︷ ︸︸ ︷
T i

jk + T j
ik

)
(207)

or

Kk
ij := −1

2

(
T k

ij︸︷︷︸
anti-symmetric in i,j

symmetric in i,j︷ ︸︸ ︷
−Tikj − Tj

k
i

)
(in pseudo-Riemannian geometry) . (208)

So the torsion 2-form can be written as

T k =
1

2
T k

jidu
j ∧ dui (203)

= Γk
ijdu

j ∧ dui (205)
= Kk

ijdu
j ∧ dui , (209)

where we define Kk
i := Kk

ijdu
j the contorsion 1-form. Therefore, we have the form equation

T k = Kk
i ∧ dui . (210)

Consequently, the symmetric and anti-symmetric parts of the connection are
Γk

(ij) =
{

k
ij

}
+Kk

(ij) ,

Γk
[ij] = Kk

[ij] = −1

2
T k

ij = +
1

2
T k

ji , (211a)

respectively, which shows that the symmetric part Γk
(ij) contains Levi-Civita connection

{
k
ij

}
and

torsion T k
ij .

Remark. We also note that if we identify

(Γa)
c
b ≡ Γc

ba (212)

and the connection form is defined by Γk
j = Γk

ijdu
i, the torsion tensor will be denoted by

T k
ij := Γk

ij − Γk
ji = 2Γk

[ij] . (213)
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Christoffel symbols in the orthogonal coordinates If we consider the case in the orthogonal co-
ordinates, we have g12 = g21 = g12 = g21 = 0 and

g11 =
1

g11
=

1

E
, g22 =

1

g22
=

1

G
. (214)

The component of Christoffel symbols becomes

Γk
ij =

1

2gkk

(
∂jgki + ∂igjk − ∂kgij

)
(no sum) , (215)

and we have the following properties:

• For j = k, we have

Γk
ik =

1

2gkk

(
���∂kgki + ∂igkk −���∂kgik

)
=

1

2gkk
∂igkk =

1

2
∂i
(

ln gkk
)

(no sum) . (216)

• For i = j ̸= k, we have

Γk
ii =

1

2gkk

(
���∂igki +���∂igik − ∂kgii

)
= − 1

2gkk
∂kgii (no sum) . (217)

• In the general case of dimension > 2, if i ̸= j ̸= k, we have

Γk
ij = 0 (in orthogonal coordinates) . (218)

In dimension = 2, it is impossible that i, j, k are all distinct, so we have the same consequence
Γk

ij = 0.

Therefore, for dimension = 2, the christoffel symbols in the orthogonal coordinates are given by

Γ1
11 =

Eu

2E
, Γ2

22 =
Gv

2G
,

Γ1
12 = Γ1

21 =
Ev

2E
, Γ2

21 = Γ2
12 =

Gu

2G
,

Γ1
22 =

−Gu

2E
, Γ2

11 =
−Ev

2G
. (219)

Example (Polar coordinates). Consider the first fundamental form in orthogonal coordinates

ds2 = E du2 + 2F dudv +Gdv2 = dr2 + r2dθ2 , (220)

where we have u = r, v = θ and
E = 1 ,

F = 0 ,

G = r2 .

=⇒

{
Er = Eθ = Gθ = 0 ,

Gr = 2r .
(221)

The Christoffel symbols are given by

Γ2
21 = Γ2

12 =
2r

2r2
=

1

r
, Γ1

22 =
−2r

2
= −r . (222)

The geodesic equations is given by (175). Therefore, each component of the geodesic equations
is obtained by θ′′ + Γ2

12r
′θ′ + Γ2

21θ
′r′ = θ′′ +

2

r
r′θ′ = 0 ,

r′′ + Γ1
22θ

′θ′ = r′′ − rθ′θ′ = 0 .

(223a)

(223b)

28



Gauss-Codazzi equation Now we have Gauss and Weingarten formulas{
pik = Γl

ikpl + bikn ,
nj = −bljpl ,

(224a)
(224b)

which correspond to the derivative vectors of tangent and normal vectors respectively. By taking the
partial derivative of pik with respect to uj , we have

∂jpik = ∂jΓ
l
ikpl + Γl

ikplj + ∂jbikn+ biknj

= ∂jΓ
l
ikpl + Γl

ik

(
Γm

ljpm + bljn
)
+ ∂jbikn+ bik(−blj)pl

=
(
∂jΓ

l
ik + Γm

ikΓ
l
mj − bikb

l
j

)
pl +

(
Γl

ikblj + ∂jbik
)
n . (225)

By interchanging the indices j and k, we obtain

∂kpij =
(
∂kΓ

l
ij + Γm

ijΓ
l
mk − bijb

l
k

)
pl +

(
Γl

ijblk + ∂kbij
)
n . (226)

As a consequence, (225)−(226)= 0, which is

∂jpik − ∂kpij = ∂j∂kpi − ∂k∂jpi = 0 . (227)

We define the Riemann(-Christoffel) curvature tensor or simply the curvature tensor as

Rl
ijk := ∂jΓ

l
ik − ∂kΓ

l
ij + Γl

mjΓ
m

ik − Γl
mkΓ

m
ij . (228)

and

Rlijk := glmR
m

ijk (229)

is defined. Therefore, according to (227), we obtain a set of equations called Gauss-Codazzi equation,
which are given by

0 = ∂jpik − ∂kpij

=
(
Rl

ijk − bikb
l
j + bijb

l
k︸ ︷︷ ︸

0

)
pl +

(
Γl

ikblj − Γl
ijblk + ∂jbik − ∂kbij︸ ︷︷ ︸

0

)
n . (230)

The first one is called Gauss equation

Rl
ijk = bikb

l
j − bijb

l
k , (231)

and the second one is Codazzi equation

∂jbik − ∂kbij = Γl
ijblk − Γl

ikblj . (232)

We note that there are some symmetries of curvature tensor:
• Anti-symmetric in the indices j and k

Rl
ijk = −Rl

ikj . (233)

• Anti-symmetric in l and i (only for Levi-Civita connection)

Rlijk = −Riljk . (234)

• Symmetric in the pairs of li and jk (only for Levi-Civita connection)

Rlijk = +Rjkli . (235)

We also define the traced curvature tensor called Ricci tensor, which is given by

Rik = Rl
ilk (236)

and the scalar curvature or Ricci scalar

R = gikRik . (237)
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Theorem Egregium of Gauss The indices i, j, k, l = 1, 2, by the symmetries of Riemann curvature
tensor, the following components are vanished:

R11jk = R22jk = 0 , Rli11 = Rli22 = 0 , (238)

From the Gauss equation (231), the residual component can be given by

R1212 = b22b11 − b12b12

= NL−M2

= det(bij) = b . (239)

Therefore, we can rewrite the Gauss curvature (153) as

K =
b

g
=
R1212

g
, (240)

which is a function of gij only, i.e., a 2-dimensional surface in E3 is totally determined by it’s intrinsic
structure. This is the famous intrinsic geometry of Gauss and we call this the theorem Egregium of
Gauss. From the Codazzi equation (232), we only need to consider the case of i = 1, 2 and j = 1 as
well as k = 2. This gives

∂b12
∂u1

− ∂b11
∂u2

= Γl
11bl2 − Γl

12bl1 ,

∂b22
∂u1

− ∂b21
∂u2

= Γl
21bl2 − Γl

22bl1 ,

(l = 1, 2) .

(241a)

(241b)

Remark. In general n-dimensional space Mn, we can always choose a orthonormal frame, so that
g = 1. Then we call K = Rijij for i ̸= j the sectional curvature of the 2-dimensional surface in
Mn, where i, j labeled two components on the surface.

Third fundamental (quadratic) form In analogy we have a Gauss map for a surface, the Gauss
sphere S2. A normal vector n will be sent to be a radius vector of S2. Therefore, n on S2 play the
same role as p on the surface M. As a result, we can calculate the first fundamental for of S2 by

I|S2 = dn · dn . (242)

Now we define the third fundamental form of M to be the first fundamental form of S2

III|M := I|S2 = dn · dn . (243)

From the first fundamental form, we can calculate the area element on the surface M and S2,
which are denoted by ∆A|M and ∆A|S2 respectively. The results can be obtained by{

∆p ≈ pu∆u+ pv∆v =⇒ ∆A|M = |pu∆u ∧ pv∆v| = |pu ∧ pv|∆u∆v ,
∆n ≈ nu∆u+ nv∆v =⇒ ∆A|S2 = |nu∆u ∧ nv∆v| = |nu ∧ nv|∆u∆v .

(244a)
(244b)

However, the vectors nu and nv are given by the Weingarten formulas (128) with (129) and (130).
We can express nu ∧ nv in terms of pu and pv by

nu ∧ nv = AD(pu ∧ pv)−BC(pu ∧ pv)

=
FM −GL

EG− F 2

FM − EN

EG− F 2
(pu ∧ pv)−

FL− EM

EG− F 2

FN −GM

EG− F 2
(pu ∧ pv)

=
LN −M2

EG− F 2
(pu ∧ pv) =

b

g
(pu ∧ pv) = K(pu ∧ pv) . (245)
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Consequently, we can measure the absolute value of Gauss curvature by the ratio

∆A|S2

∆A|M
=

|nu ∧ nv|∆u∆v
|pu ∧ pv|∆u∆v

=
|K||pu ∧ pv|∆u∆v
|pu ∧ pv|∆u∆v

= |K| . (246)

4 Cartan’s moving frame and exterior differentiation methods
We would like to introduce a very useful lemma of Cartan first.

Lemma (Cartan’s lemma). Consider a set of linearly independent frame {ei} (or coframe {ϑi}) with
i = 1, . . . , p (p < n) in n-dimensional space M and {Ei} is another set of frame. If ei ∧ Ei =
e1 ∧E1 + · · ·+ ep ∧Ep = 0, then Ei = cijej and cij = cji.

Proof. We set the linearly independent frame in M by extending to n-tuple from ei given by

e1, e2, . . . , ep︸ ︷︷ ︸
p

, ep+1, . . . , en︸ ︷︷ ︸
n−p

(247)

with index α labeled components p+1, p+2, . . . , n. We assume that Ei is expanded by frame in M
as

Ei = cijej + ciαeα . (248)

According to ei ∧Ei = 0, we have

0 = ei ∧Ei = cijei ∧ ej + ciαei ∧ eα

=
1

2

(
cij − cji︸ ︷︷ ︸

0

)
ei ∧ ej + ciα︸︷︷︸

0

ei ∧ eα . (249)

Therefore, we obtain the coefficients of Ei {
cij = cji ,

ciα = 0 ,

(250a)
(250b)

which means that Ei = cijej is constructed by {ej} only.

Orthonormal frame We have dp = pidu
i with the basis pi, under the Gram-Schmit procedure,

we can obtain an orthonormal frame (p; e1̂, e2̂, e3̂) given by (110), (111) and (112), where we use the
hatted indices to label the component of orthonormal frame now. We can expand pi by eî shown as

pi = aĵ ieĵ (̂i, ĵ = 1̂, 2̂) or
(
p1

p2

)
=

(
a1̂1 a2̂1
a1̂2 a2̂2

)(
e1̂
e2̂

)
, (251)

where we call the expansion factor aĵ i the vielbein (vierbein or tetrad for 4-dimension), which can
be regarded as the GL(2,R) transformation of the frame on M. Therefore, we have to obtain the
differential of frame (p; e1̂, e2̂, e3̂). First we can rewrite dp spanned by frame {eâ} as

dp = p1du
1 + p2du

2

=
(
a1̂1e1̂ + a2̂1e2̂

)
du1 +

(
a1̂2e1̂ + a2̂2e2̂

)
du2

=
(
a1̂1du

1 + a1̂2du
2
)
e1̂ +

(
a2̂1du

1 + a2̂2du
2
)
e2̂ := ϑ1̂e1̂ + ϑ2̂e2̂ (252)

31



with

ϑî := aîjdu
j (253)

Then we have to introduce the connection ωî
ĵ for for eî. As a result, deî can be shown as

de1̂ = ω1̂
1̂e1̂ + ω2̂

1̂e2̂ + ω3̂
1̂e3̂ ,

de2̂ = ω1̂
2̂e1̂ + ω2̂

2̂e2̂ + ω3̂
2̂e3̂ ,

de3̂ = ω1̂
3̂e1̂ + ω2̂

3̂e2̂ + ω3̂
3̂e3̂ .

=⇒ deâ = ωb̂
âeb̂ (â, b̂ = 1̂, 2̂, 3̂) . (254)

In particular, we call the connection form ωb̂
â = ωb̂

âĉϑ
ĉ the linear connection form and the coefficient

ωb̂
âĉ the Ricci rotation coefficients in the orthonormal (non-coordinate) frame. However, we have

condition for ωb̂
â due to the orthogonality

eî · eĵ = δîĵ and eâ · e3̂ = δâ3̂ . (255)

We can differentiate the orthogonality condition eî · eĵ = δîĵ , thus we have

d(eî · eĵ) = deî · eĵ + eî · deĵ
= ωk̂

îek̂ · eĵ + eî · ω
k̂
ĵek̂

= ωk̂
îδk̂ĵ + ωk̂

ĵδîk̂

= ωĵ
î + ωî

ĵ = 0 . (256)

Similarly, we have

d(eî · e3̂) = ω3̂
î + ωî

3̂ = 0 (257)

from eî · e3̂ = δî3̂. Therefore, all the components of ωb̂
â are anti-symmetric in the orthonormal frame,

we have the consequence:

• The metric compatibility gives the anti-symmetric property for linear connection form in the
orthonormal frame, i.e.,

∇ĉ gâb̂ = ∇ĉ δâb̂ = eĉ(δâb̂)︸ ︷︷ ︸
0

−ωb̂
âĉ − ωâ

b̂ĉ = 0 =⇒ ωb̂
âĉ = −ωâ

b̂ĉ . (258)

Remark. In pseudo-Riemannian space, we have

d(eâ · eb̂) = ωĉ
âηĉb̂ + ωĉ

b̂ηâĉ = ωb̂â + ωâb̂ = 0 , (259)

and the metric compatibility in pseudo-orthonormal frame should be read as

∇ĉ gâb̂ = ∇ĉ ηâb̂ = eĉ(ηâb̂)︸ ︷︷ ︸
0

−ωd̂
âĉηd̂b̂ − ωd̂

b̂ĉηâd̂ = 0 =⇒ ωb̂âĉ = −ωâb̂ĉ . (260)

32



Finally the equation (254) is reduced to
de1̂ = ω2̂

1̂e2̂ + ω3̂
1̂n ,

de2̂ = ω1̂
2̂e1̂ + ω3̂

2̂n ,

dn = ω1̂
3̂e1̂ + ω2̂

3̂e2̂ .

(261a)

(261b)

(261c)

Now we can write down the first, second and third fundamental form in orthonormal frame, which
are given by 

I = dp · dp =
(
ϑ1̂
)2

+
(
ϑ2̂
)2
,

II = −dp · dn = −ϑ1̂ω1̂
3̂ − ϑ2̂ω2̂

3̂ = ω3̂
1̂ϑ

1̂ + ω3̂
2̂ϑ

2̂ ,

III = dn · dn =
(
ω1̂

3̂

)2
+
(
ω2̂

3̂

)2
=
(
ω3̂

1̂

)2
+
(
ω3̂

2̂

)2
.

(262a)

(262b)

(262c)

It can be shown that ω3̂
1̂ and ω3̂

2̂ are linear combinations of ϑî or dui given by (290) due to Cartan’s
first structure equation (be introduced later) and Cartan’s lemma{

ω3̂
1̂ = b1̂1̂ϑ

1̂ + b1̂2̂ϑ
2̂ ,

ω3̂
2̂ = b2̂1̂ϑ

1̂ + b2̂2̂ϑ
2̂ .

=⇒
(
ω3̂

1̂

ω3̂
2̂

)
=

(
b1̂1̂ b1̂2̂
b2̂1̂ b2̂2̂

)(
ϑ1̂

ϑ2̂

)
. (263)

Consequently, the second fundamental form becomes

II = b1̂1̂
(
ϑ1̂
)2

+ b1̂2̂ϑ
2̂ϑ1̂ + b2̂1̂ϑ

1̂ϑ2̂ + b2̂2̂
(
ϑ2̂
)2

= bîĵϑ
îϑĵ . (264)

We consider the following matrix representation for tensors

eî −→ e , ϑî −→ ϑ , bîĵ −→ B . (265)

Under the special orthogonal transformation SO(2,R) for frame and coframe, we have a new or-
thonormal frame {

e′ = Pe

ϑ′ = P Tϑ
with P T = P−1 , (266)

where P ∈ SO(2,R) and T means the transpose operation for matrix. As a result, we can obtain the
diagonal matrix BD from B through P by

II = ϑTBϑ = (ϑ′)TP TBP︸ ︷︷ ︸
BD

ϑ′ , (267)

i.e.,

B −→ BD = P TBP =

(
κ1 0
0 κ2

)
. (268)

Therefore, the Gauss curvature and mean curvature can be obtained easily by
K = det(BD) = det(P T) det(B) det(P ) = det(B) = b1̂1̂b2̂2̂ − b1̂2̂b2̂1̂ ,

H =
1

2
trBD =

1

2
trB =

1

2

(
b1̂1̂ + b2̂2̂

)
,

(269a)

(269b)

respectively, where the trace of the matrix B is invariant under the SO(2,R) transformation.
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Covariant exterior differentiation We define some notation for differential operators for function,
vector and 1-form. We use d, d and d∇ for differentiation, exterior differentiation and covariant
exterior differentiation respectively.

• For a function (0-form) f , the differential df which can also be regarded as the exterior differ-
entiation of 0-form f :

d∇f = df = df . (270)

• For a vector eî, we have an absolute differential of vector deî which is described by Gauss
formulas in differential form formalism (126):

d∇eî = deî = Deî + bîn , (271)

is a vector-valued 1-form. If there is no normal spaceM⊥ of M, i.e., there are no n vector and
bîĵ , the differential is actually equal to the orthogonal projection of vector eî on M

d∇eî = deî = Deî . (272)

• For an 1-form ϑî, we only do the exterior differentiation on ϑî:

d∇ϑ
î = dϑî . (273)

Remark. The covariant exterior differentiation d∇ is a combined operator, which do the exterior
differentiation and covariant derivative on an 1-form and vector respectively.

For a function f , we also note that the second differentiation is

d2f(x, y) =
∂2f

∂x∂x
dxdx+

∂2f

∂y∂x
dxdy +

∂2f

∂x∂y
dydx+

∂2f

∂y∂y
dydy ̸= 0 , (274)

which should not be confused with the second exterior differentiation

d2f(x, y) = ddf =
∂2f

∂y∂x
dx ∧ dy + ∂2f

∂x∂y
dy ∧ dx =

(
∂2f

∂y∂x
− ∂2f

∂x∂y

)
dx ∧ dy = 0 . (275)

In addition, d2
∇ would not be vanished in general. Therefore, the second fundamental form is

II = −dp · dn = +d2p · n = (pijdu
iduj) · n = bijdu

iduj (276)

due to dp · n = 0 which has been shown in the last term in (120). We note that d2p should be
realized as a second covariant derivatives of p in (280).

For coframe dui, the corresponding exterior differentiation is vanished, which is shown as

ddui = d2ui = 0 . (277)

We call ∂
∂ui a holonomic frame and dui a holonomic coframe which is an exact form according to

the Poincaré lemma. For ϑî = aîjdu
j , its exterior differentiation is

dϑî = daîj ∧ duj + aîjd2uj ̸= 0 , (278)

which is called an anholonomic coframe or a Pfaffian form dual to the anholonomic frame eî.
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Supplement. We note that the exterior 2-form d2
∇eî will be introduced as the second structure

equation through the covariant exterior differentiation and related to the curvature 2-form of (293)
and structure constants of (315) later

d2
∇eî = d∇(deî) =

1

2
Rl̂

îĵk̂ϑ
ĵ ∧ ϑk̂ ⊗ el̂ (279a)

= d∇(ϑ
k̂Dk̂eî) = d∇ϑ

k̂︸ ︷︷ ︸
(315)

⊗Dk̂eî︸︷︷︸
Γl̂

îk̂el̂

−ϑk̂ ∧ ϑĵ ⊗DĵDk̂eî

= −1

2
ck̂ ĵm̂ϑ

ĵ ∧ ϑm̂ ⊗ Γl̂
îk̂el̂ + ϑĵ ∧ ϑk̂ ⊗ 1

2

(
DĵDk̂ −Dk̂Dĵ

)
eî

k̂↔m̂
= ϑĵ ∧ ϑk̂ ⊗ 1

2

(
− cm̂ĵk̂ Γ

l̂
îm̂el̂︸ ︷︷ ︸

Dm̂eî

+
(
DĵDk̂ −Dk̂Dĵ

)
eî

)

= ϑĵ ∧ ϑk̂ ⊗ 1

2

(
− cm̂ĵk̂Dm̂ +DĵDk̂ −Dk̂Dĵ

)
eî . (279b)

However, the second covariant derivatives of a vector eî should be

d2eî = D2eî = D(ϑk̂ ⊗Dk̂eî) = ϑĵ ⊗ Dĵϑ
k̂︸ ︷︷ ︸

Γk̂
ĵm̂ϑm̂

⊗Dk̂eî︸︷︷︸
Γl̂

îk̂el̂

+ϑĵ ⊗ ϑk̂ ⊗DĵDk̂eî

k̂↔m̂
= ϑĵ ⊗ ϑk̂ ⊗

(
Γm̂

ĵk̂ Γ
l̂
îm̂el̂︸ ︷︷ ︸

Dm̂eî

+DĵDk̂eî
)

= ϑĵ ⊗ ϑk̂ ⊗
(
Γm̂

ĵk̂Dm̂ +DĵDk̂

)
eî . (280)

Therefor, we conclude that d2
∇eî ̸= d2eî because deî is a vector-valued 1-form. We note that that

the wedge product is obtained by anti-symmetrizing the tensor product

A ∧B = (A⊗B)A =
1

2!
(A⊗B −B ⊗ A) =

1

2
(AîBĵ −BĵAî)ϑ

î ∧ ϑĵ , (281)

where A indicates the anti-symmetrization. The anti-symmetrization of DĵDk̂eî and Γm̂
ĵk̂ will be

given later, which are shown in (318) and (327b) respectively. As a result, the anti-symmetrization
of d2eî can be shown as

(d2eî)
A = (D2eî)

A = D ∧Deî = ϑĵ ∧ ϑk̂ ⊗ 1

2

(
− T m̂

ĵk̂Dm̂ +Rl̂
îĵk̂

)
el̂ (cf. (279a) or (293)) .

(282)

Canonical 1-form In general case, {eâ} does not necessarily be chosen as orthonormal, i.e., the
metric tensor is eâ · eb̂ = gâb̂ ̸= δâb̂. If {eâ} is an orthonormal frame, we have anti-symmetric
property of (256) and (257). We would discuss from the differential of frame (p; e1̂, e2̂, e3̂) and write
the equations by the covariant exterior differentiation as{

d∇p = ϑâ ⊗ eâ := ϑ ,

d∇eâ = ωb̂
â ⊗ eb̂ ,

(283a)

(283b)
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where we have defined ϑ := d∇p = dp the canonical 1-form, which is a vector-valued 1-form. We
will show that the canonical 1-form ϑ is an identity map of vector in the frame eâ. Consider a vector
V = V b̂eb̂, the canonical 1-form act on V gives

ϑ(V ) = ϑâ ⊗ eâ(V b̂eb̂) = V b̂ϑâ(eb̂)eâ = V b̂δâ
b̂
eâ = V b̂eb̂ = V . (284)

Remark. If we consider a point p move on the surface M in E3, the differential would be a vector
spanned by e1̂ and e2̂ only, which would be written as

d∇p = ϑâeâ = ϑîeî = ϑ1̂e1̂ + ϑ2̂e2̂ (285)

with ϑ3̂ = 0, it would be reduced to the equation given by (252).

Cartan’s first structure equation Now we do the covariant exterior differentiation on (283). The
covariant exterior differentiation of (283a) is

d∇ϑ = d2
∇p = d∇(ϑ

â ⊗ eâ)
= dϑâ ⊗ eâ + (−1)ϑâ ∧ D̄eâ
= dϑâeâ − ϑâ ∧ ωb̂

âeb̂
=
(
dϑâ + ωâ

b̂ ∧ ϑ
b̂
)
eâ

=
(
d∇ϑ

)
âeâ

:= T âeâ = T ̸= 0 , (286)

where D̄ is a connection with respect to eâ. Here we have defined T the vector-valued torsion 2-form
and the corresponding component the torsion 2-form as

T â :=
(
d∇ϑ

)
â := D ϑâ︸︷︷︸

component of ϑ

:= dϑâ + ωâ
b̂ ∧ ϑ

b̂ , (287)

where D can be identified as operation

D = d+ ω∧ (288)

act on the differential form which is the component of the corresponding vector-valued form. The
equation (287) we obtained is called Cartan’s first structure equation.

Remark. Since p moves on the surface M in E3, we have d∇p = ϑ1̂e1̂+ϑ2̂e2̂ and ϑ3̂ = 0. Follow
Cartan’s first structure equation (287), we have

0 = d∇ϑ
3̂ = −ω3̂

1̂ ∧ ϑ1̂ − ω3̂
2̂ ∧ ϑ2̂ = −ω3̂

î ∧ ϑ
î . (289)

According to Cartan’s lemma, the connection form is obtained as

ω3̂
î = bîĵϑ

ĵ , (290)

which gives the equations (263).
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(a) Torsion in space. (b) Torsion on surface.

Figure 8: Torsion is related to the translation.

We can consider an infinitesimal contour integral for d∇p infinitesimally around a point as a
boundary ∂D of a small region D. By applying Stokes’ theorem to the contour integral of d∇p over
∂D gives ∮

∂D

d∇p =

∫
D

d2
∇p =

∫
D

T (291)

or equivalent to ∮
∂D

ϑâ =

∫
D

Dϑâ =

∫
D

T â . (292)

The integral result implies that the translation of a point or the displacement d∇p is associated with
the torsion. If there is no displacement, i.e. d∇p = 0, the space would not be twisted.

Cartan’s second structure equation Similarly, we do the covariant exterior differentiation on
(283b) and obtain

d2
∇eâ = d∇(ω

b̂
â ⊗ eb̂)

= dωb̂
â ⊗ eb̂ + (−1)ωb̂

â ∧ D̄eb̂
= dωb̂

âeb̂ − ωb̂
â ∧ ωĉ

b̂eĉ
=
(
dωb̂

â + ωb̂
ĉ ∧ ωĉ

â

)
eb̂

=
(
d2
∇eâ
)
b̂eb̂

:= Rb̂
âeb̂ = Râ ̸= 0 . (293)

Therefore we have the vector-valued curvature 2-formRâ with the corresponding component curva-
ture 2-form given by

Rb̂
â :=

(
d2
∇eâ
)
b̂ := D ωb̂

â︸︷︷︸
component of d∇eâ

:= dωb̂
â + ωb̂

ĉ ∧ ωĉ
â , (294)

which is called Cartan’s second structure equation.
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Figure 9: Curvature is related to the rotation.

The similar infinitesimal contour integral for d∇eâ gives∮
∂D

d∇eâ =
∫
D

d2
∇eâ =

∫
D

Râ (295)

or equivalent to ∮
∂D

ωb̂
â =

∫
D

Dωb̂
â =

∫
D

Rb̂
â , (296)

which means that the rotation of a vector is associated with the curvature. If the vector does not
change the direction after moving around a contour, i.e. d∇eâ = 0, the space would be flat.

First Bianchi identity The exterior differentiation of two structure equations can get more infor-
mation of torsion and curvature. The structure equations are{

T â = dϑâ + ωâ
b̂ ∧ ϑ

b̂ ,

Râ
b̂ = dωâ

b̂ + ωâ
ĉ ∧ ωĉ

b̂ .

(297a)
(297b)

We take the exterior differentiation of the first structure equation shown by

dT â = d2ϑâ + dωâ
b̂ ∧ ϑ

b̂ − ωâ
b̂ ∧ dϑb̂

=
(
Râ

b̂ − ωâ
ĉ ∧ ωĉ

b̂

)
∧ ϑb̂ − ωâ

b̂ ∧
(
T b̂ − ωb̂

ĉ ∧ ϑĉ
)

= Râ
b̂ ∧ ϑ

b̂ −��������
ωâ

ĉ ∧ ωĉ
b̂ ∧ ϑ

b̂ − ωâ
b̂ ∧ T b̂ +��������

ωâ
b̂ ∧ ω

b̂
ĉ ∧ ϑĉ , (298)

then we obtain the first Bianchi identity

DT â = dT â + ωâ
b̂ ∧ T b̂ = Râ

b̂ ∧ ϑ
b̂ . (299)

If we have torsion-free condition T â = 0, the first Bianchi identity becomes

0 = Râ
b̂ ∧ ϑ

b̂

=
1

2
Râ

b̂ĉd̂ϑ
ĉ ∧ ϑd̂ ∧ ϑb̂

=
1

2

(
Râ

b̂ĉd̂ +Râ
ĉd̂b̂ +Râ

d̂b̂ĉ −Râ
b̂d̂ĉ −Râ

ĉb̂d̂ −Râ
d̂ĉb̂

)
ϑĉ ∧ ϑd̂ ∧ ϑb̂

=
(
Râ

b̂ĉd̂ +Râ
ĉd̂b̂ +Râ

d̂b̂ĉ

)
ϑĉ ∧ ϑd̂ ∧ ϑb̂ , (300)
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resulting in

Râ
b̂ĉd̂ +Râ

ĉd̂b̂ +Râ
d̂b̂ĉ = 0 . (301)

Second Bianchi identity Similarly, the exterior differentiation of the second structure equation is

dRâ
b̂ = d2ωâ

b̂ + dωâ
ĉ ∧ ωĉ

b̂ − ωâ
ĉ ∧ dωĉ

b̂

=
(
Râ

ĉ − ωâ
d̂ ∧ ω

d̂
ĉ

)
∧ ωĉ

b̂ − ωâ
ĉ ∧
(
Rĉ

b̂ − ωĉ
d̂ ∧ ω

d̂
b̂

)
= Râ

ĉ ∧ ωĉ
b̂︸ ︷︷ ︸

+ωĉ
b̂∧R

â
ĉ due to 2-form Râ

ĉ

−��������
ωâ

d̂ ∧ ω
d̂
ĉ ∧ ωĉ

b̂ − ωâ
ĉ ∧Rĉ

b̂ +��������
ωâ

ĉ ∧ ωĉ
d̂ ∧ ω

d̂
b̂ , (302)

which leads to the second Bianchi identity

DRâ
b̂ = dRâ

b̂ − ωĉ
b̂ ∧Râ

ĉ + ωâ
ĉ ∧Rĉ

b̂ = 0 . (303)

Remark. It is essential to consider the geometric structure from Cartan’s viewpoint. The first
structure equations in Riemannian geometry is restricted to be torsion-free condition. Then the
structure equations are reduced to{

dϑâ = −ωâ
b̂ ∧ ϑ

b̂ = +ϑb̂ ∧ ωâ
b̂ ,

Râ
b̂ = dωâ

b̂ + ωâ
ĉ ∧ ωĉ

b̂ .

(304a)
(304b)

Because of metric compatibility, we have ωâ
b̂ = −ωb̂

â (or ωâb̂ = −ωb̂â in pseudo-Riemannian
geometry), which gives

ωâ
b̂ = ωâ

b̂ĉϑ
ĉ = −ωb̂

â = −ωb̂
âĉϑ

ĉ =⇒ ωâ
b̂ĉ = −ωb̂

âĉ . (305)

Due to (304a), we obtain

dϑâ = ϑb̂ ∧ ωâ
b̂ = ωâ

b̂ĉϑ
b̂ ∧ ϑĉ =

1

2

(
ωâ

b̂ĉ − ωâ
ĉb̂

)
ϑb̂ ∧ ϑĉ . (306)

However, dϑâ is a 2-form, it can be written as

dϑâ =
1

2
aâb̂ĉϑ

b̂ ∧ ϑĉ , (307)

which leads to

aâb̂ĉ = ωâ
b̂ĉ − ωâ

ĉb̂ . (308)

By permutating the indices â, b̂ and ĉ, we have the equation

aâb̂ĉ + ab̂ĉâ − aĉâb̂ = ωâ
b̂ĉ − ωb̂

âĉ = 2ωâ
b̂ĉ . (309)

The resulting connection coefficients are

ωâ
b̂ĉ =

1

2

(
aâb̂ĉ + ab̂ĉâ − aĉâb̂

)
. (310)
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It can be shown that

aâb̂ĉ = −câb̂ĉ , (311)

where câb̂ĉ is called the structure constants or commutation coefficients, which is defined by the
commutation relation of the anholonomic frame

[eâ, eb̂] =
[
aâ

a ∂

∂xa
, ab̂

b ∂

∂xb

]
= aâ

a ∂

∂xa

(
ab̂

b ∂

∂xb

)
− ab̂

b ∂

∂xb

(
aâ

a ∂

∂xa

)
= aâ

a ∂

∂xa

(
ab̂

b

)
∂

∂xb
− ab̂

b ∂

∂xb

(
aâ

a

)
∂

∂xa

= aâ
a ∂

∂xa

(
ab̂

b

)
aĉbeĉ − ab̂

b ∂

∂xb

(
aâ

a

)
aĉaeĉ

=

[
aâ

a ∂

∂xa

(
ab̂

b

)
aĉb − ab̂

b ∂

∂xb

(
aâ

a

)
aĉa

]
eĉ

=
[
eâ
(
ab̂

b
)
aĉb − eb̂

(
aâ

a
)
aĉa
]
eĉ := cĉâb̂eĉ . (312)

Here the anholonomic frame eâ is identified as the so-called Pfaffian derivative. As a result, we
obtain the the structure constants

cĉâb̂ := eâ
(
ab̂

b
)
aĉb − eb̂

(
aâ

a
)
aĉa (313)

We note that it is apparent that the commutator

[∂a, ∂b] = 0 (314)

because two partial derivatives can be interchanged. As a result, we conclude that there is no
structure constants in holonomic frame. Therefore, the commutation coefficients can also be
called anholonomity which characterizes the property of the anholonomic frame. On the other
hand,

dϑĉ = d
(
aĉbdx

b
)

= d
(
aĉb
)
dxb

=

(
∂

∂xa
aĉb

)
dxa ∧ dxb

=
1

2

(
∂

∂xa
aĉb −

∂

∂xb
aĉa

)(
aâ

aϑâ
)
∧
(
ab̂

bϑb̂
)

=
1

2

(
ab̂

baâ
a ∂

∂xa
aĉb − aâ

aab̂
b ∂

∂xb
aĉa

)
ϑâ ∧ ϑb̂

=
1

2

(
ab̂

beâ(aĉb)− aâ
aeb̂(a

ĉ
a)

)
ϑâ ∧ ϑb̂

= −1

2

(
aĉbeâ(ab̂

b)− aĉaeb̂(aâ
a)

)
ϑâ ∧ ϑb̂

= −1

2
cĉâb̂ϑ

â ∧ ϑb̂ , (315)
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where we have used ab̂
beâ(aĉb) = −aĉbeâ(ab̂b) due to ab̂

baĉb = δĉ
b̂
. The above result proves (311)

and finally we obtain the linear connection coefficients

ωâ
b̂ĉ = −1

2

(
câb̂ĉ + cb̂ĉâ − cĉâb̂

)
(316)

or

ωâ
b̂ĉ = −1

2

(
câb̂ĉ − cb̂

â
ĉ − cĉ

â
b̂

)
(in pseudo-Riemannian geometry) . (317)

Supplement (Covariant derivative in anholonomic frame). We can do the calculation in both holo-
nomic and anholonomic frame. However, according to (251), we have

DĵDk̂eî = aĵ
jDj

(
ak̂

kDkeî
)

= aĵ
jak̂

kDjDkeî + aĵ
j(∂jak̂

k)(Dkeî)

= aĵ
jak̂

kDjDk(aî
ipi) + al̂k(eĵak̂

k)(Dl̂eî)

= aĵ
jak̂

kDj

(
aî

iDkpi + (∂kaî
i)pi

)
+ al̂k(eĵak̂

k)(Dl̂eî)

= aĵ
jak̂

k
(
aî

iDjDkpi + (∂jaî
i)Dkpi + (∂kaî

i)Djpi + (∂j∂kaî
i)pi

)
+ al̂k(eĵak̂

k)(Dl̂eî) . (318)

So we can find(
DĵDk̂ −Dk̂Dĵ

)
eî = aî

iaĵ
jak̂

k
(
DjDk −DkDj

)
pi +

(
al̂k(eĵak̂

k)− al̂k(ek̂aĵ
k)
)
(Dl̂eî) . (319)

Here we move the last term of (319) to the left-handed side and use the structure constants cl̂ ĵk̂
defined by (313). Then, we also use (190) and (312) to obtain the equation

aî
iaĵ

jak̂
k(DjDk −DkDj)pi =

(
DĵDk̂ −Dk̂Dĵ − cl̂ ĵk̂Dl̂

)
eî

=
(
DĵDk̂ −Dk̂Dĵ −Dcl̂ ĵk̂el̂

)
eî

=
(
DĵDk̂ −Dk̂Dĵ −D[eĵ ,ek̂]

)
eî . (320)

It gives the general formula of curvature tensor
Holonomic frame: Rl

ijkpl =
(
DjDk −DkDj − 0︸︷︷︸

D[∂j,∂k]=0 which is vanished due to (314).

)
pi ,

Anholonomic frame: Rl̂
îĵk̂el̂ =

(
DĵDk̂ −Dk̂Dĵ −D[eĵ ,ek̂]

)
eî .

(321a)

(321b)

Therefore, one can consider three vectors X = X ĵeĵ , Y = Y k̂ek̂ and Z = Z îeî, then it can be
shown that the frame independent formula of curvature tensor is

X ĵY k̂Z îRl̂
îĵk̂el̂ =

(
DXDY −DYDX −D[X,Y ]

)
Z := R(X,Y )Z . (322)

After the calculation, (321) can be written in terms of the connections and structure constants
Holonomic: Rl

ijk = ∂jΓ
l
ik − ∂kΓ

l
ij + Γl

mjΓ
m

ik − Γl
mkΓ

m
ij ,

Anholonomic: Rl̂
îĵk̂ = eĵω

l̂
îk̂ − ek̂ω

l̂
îĵ + ω l̂

m̂ĵω
m̂

îk̂ − ω l̂
m̂k̂ω

m̂
îĵ − ω l̂

îm̂c
m̂

ĵk̂ .

(323a)

(323b)
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Finally (320) gives the transformation formula for curvature tensor by substituting pl = al̂ lel̂ to
the left-handed side of (320)

Rl̂
îĵk̂ = al̂ laî

iaĵ
jak̂

kRl
ijk . (324)

Similarly, it can be shown that by computing the commutator of the covariant derivatives on
function f , i.e.,

(
DĵDk̂ −Dk̂Dĵ

)
f , we obtain the following equations

{
Holonomic frame: T i

jkDif = T i
jk∂if =

(
DjDk −DkDj

)
f ,

Anholonomic frame: T î
ĵk̂Dîf = T î

ĵk̂eîf =
(
DĵDk̂ −Dk̂Dĵ − [eĵ, ek̂]

)
f ,

(325a)

(325b)

and the frame independent formula of torsion tensor is given by vectorsX = X ĵeĵ and Y = Y k̂ek̂
with eî := Dîf of

X ĵY k̂T î
ĵk̂eî = DXY −DYX − [X,Y ] := T (X,Y ) . (326)

In terms of the connections and structure constants, (325) can be written as
Holonomic: T i

jk = Γi
kj − Γi

jk ,

Anholonomic: T î
ĵk̂ = ωî

k̂ĵ − ωî
ĵk̂ − cî ĵk̂ .

(327a)

(327b)

Here we note that a vector X act on a function f and a avector Y are respectively given by

X(f) = X ĵeĵ(f) and X(Y ) = X ĵeĵ(Y
k̂)ek̂ +X ĵY k̂eĵek̂ . (328)

In addition, the transformation formula for torsion tensor should be

T î
ĵk̂ = aîiaĵ

jak̂
kT i

jk . (329)

Non-fixed frame and gauge transformation For general space Mn, the vector V = V aEa (a =
1, . . . , n) under local coordinate Xa can be spanned by a non-fixed holonomic frame Ea :=

∂
∂Xa with

dEa ̸= 0. The vector Ea can be spanned by another set of anholonomic frame eb̂ given by aGL(n,R)
transformation

Ea = Ab̂
aeb̂ with Ab̂

a ∈ GL(n,R) , (330)

and we also have coframe

dXa = Ab̂
aϑb̂ , (331)

where we have defined the inverse

Ab̂
a := (A−1)b̂a . (332)

Therefore,

dV = dV aEa + V adEa (333)
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and we have to introduce the connection form Γb
a and ωb̂

â for the frame Ea and eâ respectively, which
gives {

dEa = Γb
aEb ,

deâ = ωb̂
âeb̂ .

(334a)

(334b)
The differential of V can also be expressed as

dV = dV aEa + V aΓb
aEb =

(
dV a + V bΓa

b

)
Ea := (D̄V )aEa . (335)

Remark. We note that there is no normal space Mn⊥ of Mn, therefore, we obtain

dV = (dV )⊤ = D̄V , (336)

where the connection D̄ is defined with respect to basis Ea. As a result, the differetial operator d
also represents the covariant derivative D̄ on general space Mn.

On the other hand, the differetial

dEa = dAb̂
aeb̂ + Ab̂

adeb̂ = dAb̂
aeb̂ + Ab̂

aω
ĉ
b̂eĉ =

(
dAb̂

a + Aĉ
aω

b̂
ĉ

)
eb̂ . (337)

From (330) and (334a), it implies the relation between two connection forms

Γc
aEc = Γc

aA
b̂
ceb̂ =

(
dAb

a + Aĉ
aω

b̂
ĉ

)
eb̂ =⇒ Γc

a = Ab̂
c
(
dAb̂

a + ωb̂
ĉA

ĉ
a

)
, (338)

which is a frame transformation or GL(n,R) gauge transformation of the connection form.

Remark. We note that the relation (338) comes from the frame transformation orGL(n,R) gauge
transformation, rather than metric compatibility. This relation is sometimes called vielbein postu-
late. However, the equation is still valid even if the frame eâ is not orthonormal or the nonmetricity
Qabc = −∇agbc is not vanished. In such case, the connection ωb̂

â contains the symmetric or trace
part, i.e., ω(âb̂) ̸= 0 or ωâ

â ̸= 0. So it is improper to call the relation postulate. People always
implicitly define a total connection D(Γ, ω) of tensor with respect to both the holonomic and an-
holonomic basis of Ea, dXa, eâ and ϑâ. By giving a tensor A := Ab̂

aeb̂ ⊗ dXa, the connection
D act on A is

DA = D
(
Ab̂

aeb̂ ⊗ dXa
)

=
(
dAb̂

â

)
eb̂ ⊗ dX â + Ab̂

a

(
Deb̂

)
⊗ dXa + Ab̂

aeb̂ ⊗
(
DdXa

)
=
(
dAb̂

a

)
eb̂ ⊗ dXa + Ab̂

a

(
ωĉ

b̂eĉ
)
⊗ dXa + Ab̂

aeb̂ ⊗
(
− Γa

cdX
c
)

=
(
dAb̂

a + Aĉ
aω

b̂
ĉ − Ab̂

cΓ
c
a

)
eb̂ ⊗ dXa = 0 (339)

due to (338), which is independent of the metric compatibility. As a result, the component gives
the vielbein postulate

(DA)b̂a = dAb̂
a + Aĉ

aω
b̂
ĉ − Ab̂

cΓ
c
a = 0 (340)

or

∇dA
b̂
a = ∂dA

b̂
a + Aĉ

aω
b̂
ĉd − Ab̂

cΓ
c
ad = 0 . (341)
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Figure 10: Two points on the hypersurface Mn−1 in Mn.

Now we will discuss the connection on the hypersurface Mn−1 of M n. Consider a point p on
Mn−1 is identified by a vector V in M n. Simirlarly, a point q on Mn−1 is represented by V ′ in
M n. Here we only focus on the connection on Mn−1, we have restricted our case that dV = q−p =
V ′ − V lays on the hypersurface Mn−1 only. So dV can be expanded not only by frame Ea =

∂
∂Xa

(a = 1, . . . , n) on M n but also by frame ∂i = ∂
∂ui (i = 1, . . . , n− 1) on Mn−1.

Remark. We can consider the case of n = 3 and two infinitesimal closed points q and p with the
spherical coordinate Xa = (r, θ, ϕ) in M 3 and polar coordinate ui = (ρ, φ) in M2. Therefore
Ea and ∂i are non-fixed frames.

The differential dV a can be given by

dV a =
∂V a

∂u
du+

∂V a

∂v
dv = ∂iV

adui , (342)

then all then-dimensional vectors can be expanded by (n−1)-dimensional ones, the resulting equation
of (335) would be rewritten as

dV = (D̄V )aEa

=
(
∂iV

adui + V bΓa
bcdX

c
)
Ea

=
(
∂iV

adui + V bΓa
bc
∂Xc

∂ui︸︷︷︸
hc

i

dui
)
Ea

=
(
∂iV

a + V bΓa
bch

c
i

)
duiEa := V a

i du
iEa . (343)

Here we define

Vi := V a
i Ea =

(
∂iV

a + V bΓa
bch

c
i

)
Ea . (344)

Remark. The result of (66) in E3 can be reduced from (335) by

M n −→ E3

V a −→ pa = xa ,

Ea −→ δa ,

Γa
b −→ 0 ,

(D̄V )a −→ dxa .

(345)
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Due to (334a) and (338), we have

0 = dδa = dAb̂
aeb̂ + Ab̂

aω
ĉ
b̂eĉ = (dAb̂

a + Aĉ
aω

b̂
ĉ)eb̂ . (346)

As a consequence, the connection form ωb̂
ĉ is obtained by

ωb̂
ĉ = −Aĉ

a dAb̂
a = +Ab̂

a dAĉ
a . (347)

In addition, within (345), (343) becomes as

dp =
(
∂ix

a + xb Γa
bc︸︷︷︸

0

hci
)
duiδa =

(
∂ix

a
)
duiδa := ∂ipdui . (348)

Therefore, (344) reduces to the derivative vector pi := ∂ip on the hypersurface M of E3 is

pi = ∂ip = ∂ix
aδa = (∂ix, ∂iy, ∂iz) . (349)

Figure 11: Two vectors on the hypersurface Mn−1 in Mn.

Induced connection However, if we move the reference point o on the hypersurface Mn−1, the
vector dV should be regarded as the difference between V ′ and V on Mn−1 and is equivalent to
DV with respect to the basis ∂

∂ui as shown in Fig. 11. Then, we have

dV = DV = D

(
V k ∂

∂uk

)
=
(
∂iV

k + V lΓk
li

)
dui

∂

∂uk
. (350)

By using chain rule to expand Ea in terms of ∂
∂uk

Ea =
∂

∂Xa
=

∂uk

∂Xa︸ ︷︷ ︸
ha

k

∂

∂uk
= ha

k ∂

∂uk
(351)

and substituting the relation into (343), we have

dV =
(
∂iV

a + V bΓa
bch

c
i

)
dui
(
ha

k ∂

∂uk

)
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=

(
∂i

(
V j ∂X

a

∂uj︸ ︷︷ ︸
ha

j

)
ha

k + V l ∂X
b

∂ul︸︷︷︸
hb

l

Γa
bch

c
iha

k

)
dui

∂

∂uk

=

(
(∂iV

j)hajha
k︸ ︷︷ ︸

δkj

+V l
(
(∂ih

a
l)ha

k + hblΓ
a
bch

c
iha

k
))

dui
∂

∂uk

=

(
(∂iV

k) + V l
(
(∂ih

a
l)ha

k + hblΓ
a
bch

c
iha

k
))

dui
∂

∂uk
. (352)

Now we compare (350) and (352), the induced connectionΓk
li on hypersurfaceMn−1 can be obtained

from the connection Γa
bc on M n through the projection hak

Γk
li = (∂ih

a
l)ha

k + hblΓ
a
bch

c
iha

k . (353)

We note that the discussion above can be generalized to the case for arbitrary frame (including fixed
and non-fixed frame).

Curvature and torsion in subspace Now we would like to consider an n-dimensional space M
embedded in a m-dimensional space M . We consider a so-called Darboux frame of M. We label
the components by indices â, b̂, ĉ = 1̂, . . . , m̂ on M the indices î, ĵ, k̂ = 1̂, . . . , n̂ on M, and the
indices p, q, r = n̂ + 1̂, . . . , m̂ on the normal space M⊥ of M in the orthonormal frame. We define
the geometric objects on M specified by barred symbols. The frame ēâ is extended by the vector eî
and ep̂

ēâ = δ îâ eî + δp̂â ep̂ −→ ē :=
(
ēâ
)
=

(
eî
ep̂

)
. (354)

Similarly, we have

ϑ̄â = δâ
î
ϑî + δâp̂ ϑ

p̂ −→ ϑ̄ :=
(
ϑ̄â
)
=
(
ϑî ϑp̂

)
. (355)

Therefore, the components of {ēâ} and {ϑ̄â} are ēî = eî, ēp̂ = ep̂, ϑ̄î = ϑî and ϑ̄p̂ = ϑp̂. The metric
is defined by the inner product of two vectors, we have the following relations

ḡ(ēâ, ēb̂) = δâb̂ , g(eî, eĵ) = δîĵ , g⊥(ep̂, eq̂) = δp̂q̂ , ḡ(ēî, ēp̂) = 0 , (356)

where ḡ, g and g⊥ are metrics of the manifolds M , M and M⊥ respectively. Due to the metric
compatible condition, we have ωb̂

â = −ωâ
b̂ and

ωb̂
â = δb̂

ĵ
δ îâω

ĵ
î + δb̂q̂δ

î
âω

q̂
î + δb̂

ĵ
δp̂âω

ĵ
p̂ + δb̂q̂δ

p̂
âω

q̂
p̂ , (357)

which can also be recognized by the matrix as

ω :=
(
ωb̂

â

)
=

(
ωĵ

î ωq̂
î

ωĵ
p̂ ωq̂

p̂

)
. (358)

Now we will discuss the dynamics on subspace M only. The differential of frame on M are given
by {

d∇p = ϑ̄âēâ with ϑp̂ = 0 ,

d∇ēâ = ω̄b̂
âēb̂ .

(359a)

(359b)
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or 
d∇p = ϑîeî ,

d∇eî = ωĵ
îeĵ + ωq̂

îeq̂ ,

d∇ep̂ = ωĵ
p̂eĵ + ωq̂

p̂eq̂ .

−→

d∇p
d∇eĵ
d∇ep̂

 =

 ϑî 0

ωĵ
î ωq̂

î

ωĵ
p̂ ωq̂

p̂

(eîeq̂
)
.

(360a)

(360b)

(360c)

In addition

ϑp̂ = 0 =⇒ 0 = Dϑp̂ = d ϑp̂︸︷︷︸
0

+ωp̂
î ∧ ϑ

î + ωp̂
q̂ ∧ ϑq̂︸︷︷︸

0

= T p̂ , (361)

Thus, we have

ωp̂
î ∧ ϑ

î = 0 . (362)

Applying the Cartan’s lemma, we obtain the connection form

ωp̂
î = −ωî

p̂ = hp̂îĵϑ
ĵ , (363)

or

ωp̂̂i = hp̂̂iĵϑ
ĵ and ωîp̂ = −ωp̂̂i = −hp̂̂iĵϑ

ĵ = hîp̂ĵϑ
ĵ (in pseudo-Riemannian geometry) .

(364)

Now we would like to calculate the differential of structure equations. The covarint exterior differ-
entiation of first structure equation is obtained by

d2
∇p = d∇(ϑ̄

âēâ) = d∇(ϑ
îeî + ϑp̂ep̂)

= dϑîeî − ϑî ∧ d∇eî + dϑp̂ep̂ − ϑp̂ ∧ d∇ep̂
= dϑîeî − ϑî ∧

(
ωĵ

îeĵ + ωp̂
îep̂
)
+ dϑp̂ep̂ − ϑp̂ ∧

(
ωî

peî + ωq̂
p̂eq̂
)

= dϑiei + ωĵ
î ∧ ϑ

îeĵ + ωp̂
î ∧ ϑ

îep̂ + dϑp̂ep̂ + ωî
p̂ ∧ ϑp̂eî + ωq̂

p̂ ∧ ϑp̂eq̂
=
(
dϑî + ωî

ĵ ∧ ϑ
î︸ ︷︷ ︸

T î

+ωî
p̂ ∧ ϑp̂

)
eî +

(
dϑp̂ + ωp̂

q̂ ∧ ϑq̂︸ ︷︷ ︸
T p̂

+ωp̂
î ∧ ϑ

î
)
ep̂

= T âēâ = T îeî + T p̂ep̂ . (365)

By using (361), we obtain

d2
∇p = T îeî =

(
T î + ωp̂

q̂ ∧ ϑq̂︸︷︷︸
0

)
eî = T îeî , (366)

which leads to the equation

T î = T î . (367)

Remark. For case of M is embedded in M , we have consquence of

T î = T î . (368)

It means that there is no extrinsic torsion contribution in the equation of torsion in embedding
structure of geometry (cf. Gauss equation (372a)).
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The covarint exterior differentiation of second structure equation is

d2
∇ēâ = Râ

âēâ = Rĵ
âeĵ +Rp̂

âep̂ , (369)

which can be calculated separately by d2
∇eî and d2

∇ep̂. They are shown by

d2
∇eî = dωĵ

îeĵ − ωĵ
i ∧ d∇eĵ + dωp̂

îep̂ − ωp̂
î ∧ d∇ep̂

= dωĵ
îeĵ − ωĵ

î ∧
(
ωk̂

ĵek̂ + ωp̂
ĵep̂
)
+ dωp̂

îep̂ − ωp̂
î ∧
(
ωĵ

p̂eĵ + ωq̂
p̂eq̂
)

= dωĵ
îeĵ + ωk̂

ĵ ∧ ω
ĵ
îek̂ + ωp̂

ĵ ∧ ω
ĵ
îep̂ + dωp̂

îep̂ + ωĵ
p̂ ∧ ωp̂

îeĵ + ωq̂
p̂ ∧ ωp̂

îeq̂
=
(
dωĵ

î + ωĵ
k̂ ∧ ω

k̂
î︸ ︷︷ ︸

Rĵ
î

+ωĵ
p̂ ∧ ωp̂

î

)
eĵ +

(
dωp̂

î + ωp̂
ĵ ∧ ω

ĵ
î + ωp̂

q̂ ∧ ωq̂
î

)
ep̂

= Rĵ
îeĵ +Rp̂

îep̂ = Râ
îēâ (370)

and

d2
∇ep̂ = dωî

p̂eî − ωî
p̂ ∧ d∇eî + dωq̂

p̂eq̂ − ωq̂
p̂ ∧ d∇eq̂

= dωî
p̂eî − ωî

p̂ ∧
(
ωĵ

îeĵ + ωq̂
îeq̂
)
+ dωq̂

p̂eq̂ − ωq̂
p̂ ∧
(
ωî

q̂eî + ωr̂
q̂er̂
)

= dωî
p̂eî + ωĵ

î ∧ ω
î
p̂eĵ + ωq̂

î ∧ ω
î
p̂eq̂ + dωq̂

p̂eq̂ + ωî
q̂ ∧ ωq̂

p̂eî + ωr̂
q̂ ∧ ωq̂

p̂er̂
=
(
dωî

p̂ + ωî
ĵ ∧ ω

ĵ
p̂ + ωî

q̂ ∧ ωq̂
p̂

)
eî +

(
dωq̂

p̂ + ωq̂
r̂ ∧ ωr̂

p̂︸ ︷︷ ︸
Rq̂

p̂

+ωq̂
î ∧ ω

î
p̂

)
eq̂

= Rî
p̂eî +Rq̂

p̂eq̂ = Râ
p̂ēâ , (371)

respectively. According to the results above, we have the following equations:
Gauss equation: Rĵ

î = Rĵ
î + ωĵ

p̂ ∧ ωp̂
î ,

Codazzi equation: Rp̂
î = dωp̂

î + ωp̂
ĵ ∧ ω

ĵ
î + ωp̂

q̂ ∧ ωq̂
î ,

Ricci equation: Rq̂
p̂ = Rq̂

p̂ + ωq̂
î ∧ ω

î
p̂ .

(372a)

(372b)

(372c)

Subspace of Em We consider that a space M is embedded in the flat space Em. We can chose the
cartesian coordinate for Em, every component of the orthonormal frame {ēâ} is related to the fixed
cartesian frame by

ēî = aî
jδj = aî

j ∂

∂xj
, and ϑ̄i = aîjdx

j (i = 1, 2, . . . , n) ,

ēp̂ = ap̂
qδq = ap̂

q ∂

∂xq
, and ϑ̄p̂ = ap̂qdx

q (p = n+ 1, . . . ,m) ,

(373)

where aîj, aîj ∈ SO(m,R). Therefore, the differential of the frame on subspace M with ϑ̄p̂ = 0 is
given by {

d∇p = ϑî ⊗ eî = dxi ⊗ δi ,

d∇ēâ = ωb̂
â ⊗ ēb̂ = Γb

a ⊗ δb ,

(374a)

(374b)
and we can show that the torsion and curvature are vanished by using (374) in terms of cartesian
frame, which gives the following equations for frame with torsion-free and curvature-free on Em

d2
∇p = T îeî = 0 ,

d2
∇eî = Râ

îēâ = 0 ,

d2
∇ep̂ = Râ

p̂ēâ = 0 .

(375a)
(375b)
(375c)
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The equations (367) and (372) turn out to be

Torsion-free: T î = dϑî + ωî
ĵ ∧ ϑ

ĵ = 0 ,

Gauss equation: Rĵ
î = −ωĵ

p̂ ∧ ωp̂
î = ωp̂

ĵ ∧ ω
p̂
î ,

Codazzi equation: 0 = dωp̂
î + ωp̂

ĵ ∧ ω
ĵ
î + ωp

q̂ ∧ ωq̂
î ,

Ricci equation: Rq̂
p̂ = −ωq̂

î ∧ ω
î
p̂ = ωq̂

î ∧ ω
p̂
î ,

(376a)

(376b)

(376c)

(376d)

because all barred torsion and curvature 2-forms should be vanished in Em. According to (376a), we
have torsion-free, it leads us to have Ricci rotation coefficients written as (316). From the consequence
of (363), the Gauss equation (376b) is

Rĵ
î =

1

2
Rĵ

îk̂l̂ϑ
k̂ ∧ ϑl̂

= (hp̂ĵk̂ϑ
k̂) ∧ (hp̂îl̂ϑ

l̂) =
1

2

(
hp̂ĵk̂h

p̂
îl̂ − hp̂ĵl̂h

p̂
îk̂

)
ϑk̂ ∧ ϑl̂ , (377)

i.e.,

Rĵ
îk̂l̂ = hp̂ĵk̂h

p̂
îl̂ − hp̂ĵl̂h

p̂
îk̂ , (378)

or

Rĵ
îk̂l̂ = −hĵ p̂k̂h

p̂
îl̂ + hĵ p̂l̂h

p̂
îk̂ = hp̂

ĵ
k̂h

p̂
îl̂ − hp̂

ĵ
l̂h

p̂
îk̂ (in pseudo-Riemannian geometry) . (379)

The Codazzi equation (376c) becomes

0 = d(hp̂îĵϑ
ĵ) + (hp̂ĵk̂ϑ

k̂) ∧ ωĵ
î + ωp̂

q̂ ∧ (hq̂ îĵϑ
ĵ)

= dhp̂îĵ ∧ ϑ
ĵ + hp̂îĵdϑ

ĵ + hp̂ĵk̂ϑ
k̂ ∧ ωĵ

î + hq̂ îĵω
p̂
q̂ ∧ ϑĵ . (380)

The Ricci equation can be read as

Rq̂
p̂ =

1

2
Rq̂

p̂k̂l̂ϑ
k̂ ∧ ϑl̂

= (hq̂ îk̂ϑ
k̂) ∧ (hp̂îl̂ϑ

l̂) =
1

2

(
hq̂ îk̂h

p̂
îl̂ − hq̂ îl̂h

p̂
îk̂

)
ϑk̂ ∧ ϑl̂ , (381)

i.e.,

Rq̂
p̂k̂l̂ = hq̂ îk̂h

p̂
îl̂ − hq̂ îl̂h

p̂
îk̂ , (382)

or

Rq̂
p̂k̂l̂ = −hq̂ îk̂h

î
p̂l̂ + hq̂ îl̂h

î
p̂k̂ = hq̂ îk̂hp̂

î
l̂ − hq̂ îl̂hp̂

î
k̂ (in pseudo-Riemannian geometry) . (383)

Example (Hypersurface of E3). If we consider M and M to be M2 and E3 and ∂
∂x3 is assume

to be aligned to the normal vector n of M, we have
ēî = aî

jδj = aî
j ∂

∂xj
, and ϑ̄i = aîjdx

j (i, j = 1, 2 and x1 = x, x2 = y) ,

ē3̂ = a3̂
3δ3 = a3̂

3 ∂

∂x3
, and ϑ̄3̂ = a3̂3dx

3 (xp = x3 = z) .

(384a)

49



Due to the fixed condition p = n+ 1 = m = 3, it is impossible to have p ̸= q, which leads to the
results for hypersuface with ϑ̄3̂ = 0 of

Rq̂
p̂ = 0 (for hypersuface) , (385)

and

ωp̂
q̂ = 0 (for hypersuface) . (386)

We can identify h3̂ îĵ to be bîĵ which is the extrinsic curvature ofM. The corresponding component
equations of (378) and (380) areR

ĵ
îk̂l̂ = bĵk̂bîl̂ − bĵ l̂bîk̂ ,

0 = dbîĵ ∧ ϑ
ĵ + bîĵdϑ

ĵ + bĵk̂ω
ĵ
îl̂ϑ

k̂ ∧ ϑl̂ .

(387a)

(387b)

If we use the holonomic frame with coordinate {ui} on M, we have

ϑî = aîjdx
j = aîj

∂xj

∂uk
duk = dui =⇒ eîk := aîj

∂xj

∂uk
= δ îk (388)

such that dϑî = ddui = 0 (or cî ĵk̂ = 0) and ωĵ
î = Γj

i, therefore (387a) and (387b) becomes

Rj
ikl = bjkbil − bjlbik (389)

and(
∂kbij

)
duk ∧ duj +

(
bjkΓ

j
il

)
duk ∧ dul = 0 =⇒ ∂kbij − ∂jbik + blkΓ

l
ij − bljΓ

l
ik = 0 ,

(390)

which have been given by (231) and (232) respectively.
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