Lecture Note on Elementary Differential Geometry

Ling-Wei Luo*
Institute of Physics, Academia Sinica

July 20, 2019

Abstract

This is a note based on a course of elementary differential geometry as I gave the lectures in the NCTU-Yau Journal Club: Interplay of Physics and Geometry at Department of Electrophysics in National Chiao Tung University (NCTU) in Spring semester 2017. The contents of remarks, supplements and examples are highlighted in the red, green and blue frame boxes respectively. The supplements can be omitted at first reading. The basic knowledge of the differential forms can be found in the lecture notes given by Dr. Sheng-Hong Lai (NCTU) and Prof. Jen-Chi Lee (NCTU) on the website. The website address of Interplay of Physics and Geometry is http: //web.it.nctu.edu.tw/~string/journalclub.htm or http://web.it.nctu. edu.tw/~string/ipg/.

Contents

1 Curve on \mathbb{E}^{2} 1
2 Curve in \mathbb{E}^{3} 6
3 Surface theory in \mathbb{E}^{3} 9
4 Cartan's moving frame and exterior differentiation methods 31

1 Curve on \mathbb{E}^{2}

We define n-dimensional Euclidean space \mathbb{E}^{n} as a n-dimensional real space \mathbb{R}^{n} equipped a dot product defined n-dimensional vector space.

Tangent vector In 2-dimensional Euclidean space, an \mathbb{E}^{2} plane, we parametrize a curve $\mathbf{p}(t)=(x(t), y(t))$ by one parameter t with respect to a reference point o with a fixed Cartesian coordinate frame. The velocity vector at point \mathbf{p} is given by $\dot{\mathbf{p}}(t)=(\dot{x}(t), \dot{y}(t))$ with the norm

Figure 1: A curve.

$$
\begin{equation*}
|\dot{\mathbf{p}}(t)|=\sqrt{\dot{\mathbf{p}} \cdot \dot{\mathbf{p}}}=\sqrt{\dot{x}^{2}+\dot{y}^{2}} \tag{1}
\end{equation*}
$$

[^0]where $\dot{x}:=d x / d t$. The arc length s in the interval $[a, b]$ can be calculated by
\[

$$
\begin{equation*}
s=\int d s=\int \sqrt{(d x)^{2}+(d y)^{2}}=\int_{a}^{b} \sqrt{\dot{x}^{2}+\dot{y}^{2}} d t=\int_{a}^{b}|\dot{\mathbf{p}}(t)| d t . \tag{2}
\end{equation*}
$$

\]

The arc length can be a function of parameter t given by

$$
\begin{equation*}
s(t)=\int_{a}^{t}\left|\dot{\mathbf{p}}\left(t^{\prime}\right)\right| d t^{\prime} \tag{3}
\end{equation*}
$$

From the fundamental theorem of calculus, we have

$$
\begin{equation*}
\left|\frac{d s}{d t}\right| \neq 0 \quad \Longrightarrow \quad \dot{s}(t)=|\dot{\mathbf{p}}(t)|>0 \tag{4}
\end{equation*}
$$

According to the inverse function theorem, we have $t=t(s)$. One can parametrize the curve by arc length s as $\mathbf{p}(s)=(x(s), y(s))$. The corresponding velocity vector should be $\mathbf{p}^{\prime}(s)=\left(x^{\prime}(s), y^{\prime}(s)\right)$, where we have $x^{\prime}:=d x / d s$. We can rewrite the derivatives of x and y with respect to s as

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{d x}{d s}=\frac{d x}{d t} \frac{d t}{d s}=\dot{x} \frac{d t}{d s} \tag{5}\\
y^{\prime}=\dot{y} \frac{d t}{d s}
\end{array}\right.
$$

Thus, the norm of the velocity vector parametrized by s can be calculated as

$$
\begin{equation*}
\left|\mathbf{p}^{\prime}(s)\right|=\sqrt{x^{\prime 2}+y^{\prime 2}}=\sqrt{\dot{x}^{2}+\dot{y}^{2}} \frac{d t}{d s}=|\dot{\mathbf{p}}| \frac{d t}{d s}=\frac{d s}{d t} \frac{d t}{d s}=1 \tag{6}
\end{equation*}
$$

which implies that the velocity vector $\mathbf{p}^{\prime}(s)$ is a unit vector. We can define a unit tangent vector as a velocity vector parametrized by s

$$
\begin{equation*}
\boldsymbol{T} \equiv \mathbf{e}_{1}:=\mathbf{p}^{\prime}(s) . \tag{7}
\end{equation*}
$$

Normal vector Due to $\mathbf{e}_{1} \cdot \mathbf{e}_{1}=\mathbf{p}^{\prime} \cdot \mathbf{p}^{\prime}=1$, we have

$$
\begin{equation*}
\mathbf{e}_{1}^{\prime} \cdot \mathbf{e}_{1}+\mathbf{e}_{1} \cdot \mathbf{e}_{1}^{\prime}=0 \quad \Longrightarrow \quad \mathbf{e}_{1}^{\prime} \cdot \mathbf{e}_{1}=0 \quad \Longrightarrow \quad \mathbf{e}_{1}^{\prime} \perp \mathbf{e}_{1}, \tag{8}
\end{equation*}
$$

it indicates that \mathbf{e}_{1}^{\prime} is a normal vector. The principle normal vector is defined by

$$
\begin{equation*}
\boldsymbol{N} \equiv \mathbf{e}_{2}:=\frac{\mathbf{e}_{1}^{\prime}}{\left|\mathbf{e}_{1}^{\prime}\right|} \tag{9}
\end{equation*}
$$

as a unit normal vector at $\mathbf{p}(s)$. The curvature of a curve $\mathbf{p}(s)$ is given by $\kappa(s)=\left|\mathbf{e}_{1}^{\prime}(s)\right|>0$, which can be realized as a norm of the acceleration vector $\boldsymbol{a}:=\mathbf{e}_{1}^{\prime}=\mathbf{p}^{\prime \prime}$. Therefore, we have a relation

$$
\begin{equation*}
\mathbf{e}_{1}^{\prime}=\kappa(s) \mathbf{e}_{2} . \tag{10}
\end{equation*}
$$

Remark. If a vector V is an unit vector, $|V|=1$, the corresponding derivative vector would be perpendicular to itself, i.e.

$$
\begin{equation*}
V^{\prime} \perp V \tag{11}
\end{equation*}
$$

Osculating plane The plane is spanned by the vectors \mathbf{e}_{1} and \mathbf{e}_{2} is called osculating plane

Newton's second law In classical physics, we have a momentum vector $\boldsymbol{p}=m \boldsymbol{T}=m \mathbf{p}^{\prime}$ with mass m. The force \boldsymbol{F} is defined by Newton's second law

$$
\begin{equation*}
\boldsymbol{F}=\frac{d \boldsymbol{p}}{d s}=m \frac{d \boldsymbol{T}}{d s}=m \boldsymbol{a}=m \mathbf{p}^{\prime \prime} \tag{12}
\end{equation*}
$$

with respect to parameter s.

Frame A set of vector $\mathbf{e}_{1}, \mathbf{e}_{2}$ equipped with a point \mathbf{p} calls frame. In such of case, a frame at \mathbf{p} is denoted by $\left(\mathbf{p} ; \mathbf{e}_{1}, \mathbf{e}_{2}\right)$.

Frenet-Serret formula in 2D From the orthonormality condition $\mathbf{e}_{i} \cdot \mathbf{e}_{j}=\delta_{i j}(i, j=1,2)$, we have

$$
\begin{align*}
& \mathbf{e}_{i}^{\prime} \cdot \mathbf{e}_{j}+\mathbf{e}_{i} \cdot \mathbf{e}_{j}^{\prime}=0 \tag{13a}\\
\Longrightarrow & \mathbf{e}_{1}^{\prime} \cdot \mathbf{e}_{2}+\mathbf{e}_{1} \cdot \mathbf{e}_{2}^{\prime}=\kappa+\mathbf{e}_{1} \cdot \mathbf{e}_{2}^{\prime}=0 \tag{13b}\\
\Longrightarrow & \mathbf{e}_{1} \cdot \mathbf{e}_{2}^{\prime}=-\kappa \quad\left(\mathbf{e}_{2}^{\prime} \text { has component }-\kappa \text { along } \mathbf{e}_{1} \text { direction }\right) \tag{13c}\\
\Longrightarrow & \mathbf{e}_{2}^{\prime}=-\kappa \mathbf{e}_{1} . \tag{13d}
\end{align*}
$$

As a result, we have the following relations

$$
\left\{\begin{array}{l}
\mathbf{p}^{\prime}=+\mathbf{e}_{1} \tag{14}\\
\mathbf{e}_{1}^{\prime}= \\
\mathbf{e}_{2}^{\prime}=
\end{array}-\kappa \mathbf{e}_{1} \quad+\kappa \mathbf{e}_{2} \quad \Longrightarrow \quad\left(\begin{array}{l}
\mathbf{p}^{\prime} \\
\mathbf{e}_{1}^{\prime} \\
\mathbf{e}_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \kappa \\
-\kappa & 0
\end{array}\right)\binom{\mathbf{e}_{1}}{\mathbf{e}_{2}}\right.
$$

called Frenet-Serret formula.

Example (Circle in \mathbb{E}^{2}). A circle with radius r can be parametrized by $\mathbf{p}(t)=(r \cos t, r \sin t)$ with $0 \leq t \leq 2 \pi$.

Figure 2: A circle.
The tangent vector is

$$
\begin{equation*}
\dot{\mathbf{p}}(t)=(-r \sin t, r \cos t) \tag{15}
\end{equation*}
$$

with norm

$$
\begin{equation*}
|\dot{\mathbf{p}}|=\sqrt{\left.r^{2} \sin ^{2} t, r^{2} \cos ^{2} t\right)}:=r . \tag{16}
\end{equation*}
$$

The arc length $s(t)$ is

$$
\begin{equation*}
s(t)=\int_{0}^{t}\left|\mathbf{p}\left(t^{\prime}\right)\right| d t^{\prime}=\int_{0}^{t} r d t^{\prime}=r t \tag{17}
\end{equation*}
$$

Therefore, the circumference is

$$
\begin{equation*}
L=\int_{0}^{2 \pi}\left|\mathbf{p}\left(t^{\prime}\right)\right| d t^{\prime}=\int_{0}^{2 \pi} r d t^{\prime}=2 \pi r \tag{18}
\end{equation*}
$$

By $t=s / r$, the circle $\mathbf{p}(s)$ and its tangent vector are

$$
\begin{equation*}
\mathbf{p}(s)=\left(r \cos \frac{s}{r}, r \sin \frac{s}{r}\right) \tag{19a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{p}^{\prime}(s)=\left(-\sin \frac{s}{r}, \cos \frac{s}{r}\right)=\mathbf{e}_{1}=\boldsymbol{T} \tag{19b}
\end{equation*}
$$

respectively. From (19b), we have

$$
\begin{equation*}
\mathbf{e}_{1}^{\prime}(s)=\left(-\frac{1}{r} \cos \frac{s}{r},-\frac{1}{r} \sin \frac{s}{r}\right) . \tag{20}
\end{equation*}
$$

The curvature κ can be obtained by

$$
\begin{equation*}
\kappa=\left|\mathbf{e}_{1}^{\prime}\right|=\sqrt{\frac{1}{r^{2}} \cos ^{2} \frac{s}{r}+\frac{1}{r^{2}} \sin ^{2} \frac{s}{r}}=\frac{1}{r}, \tag{21}
\end{equation*}
$$

which is the inverse of the constant radius r. The normal vector can be calculated by

$$
\begin{equation*}
\mathbf{e}_{2}=\frac{\mathbf{e}_{1}^{\prime}}{\left|\mathbf{e}_{1}^{\prime}\right|}=r\left(-\frac{1}{r} \cos \frac{s}{r}-\frac{1}{r} \sin \frac{s}{r}\right)=\left(-\cos \frac{s}{r}, \sin \frac{s}{r}\right) . \tag{22}
\end{equation*}
$$

Gauss map Gauss map G is a mapping which globally send all the points \mathbf{p} of curve to a unit circle S^{1} (a Gauss circle) centered at \mathbf{c} and send the corresponding normal vector \mathbf{e}_{2} to a radius vector from c pointing to S^{1}, which is shown as Fig. 3. Therefore, \mathbf{e}_{2} can be represented as a point on S^{1}.

Let's consider two normal vectors $\mathbf{e}_{2}(s)$ and $\mathbf{e}_{2}\left(s^{\prime}\right)$ with respect to two infinitesimal points $\mathbf{p}(s)$ and $\mathbf{p}\left(s^{\prime}\right)$, where $s^{\prime}=s+\Delta s$ is infinitesi-

Figure 3: The Gauss map G. mal close to s. We can expand $\mathbf{e}_{2}\left(s^{\prime}\right)$ at s :

$$
\begin{align*}
\mathbf{e}_{2}\left(s^{\prime}\right) & =\mathbf{e}_{2}(s+\Delta s) \\
& \approx \mathbf{e}_{2}(s)+\mathbf{e}_{2}^{\prime}(s) \Delta s \\
& =\mathbf{e}_{2}(s)+\left(-\kappa(s) \mathbf{e}_{1}(s)\right) \Delta s \\
& =\mathbf{e}_{2}(s)+(-\kappa(s) \Delta s) \mathbf{e}_{1}(s), \tag{23}
\end{align*}
$$

which is the parametrization of a point under the Gauss map. Thus, we know the distance between two infinitesimal point $\mathbf{e}_{2}(s)$ and $\mathbf{e}_{2}\left(s^{\prime}\right)$ on Gauss circle given by

$$
\begin{equation*}
\left|\mathbf{e}_{2}\left(s^{\prime}\right)-\mathbf{e}_{2}(s)\right|=\left|\Delta \mathbf{e}_{2}\right|=\kappa(s) \Delta s . \tag{24}
\end{equation*}
$$

And we also have
$\Delta \mathbf{p} \equiv \mathbf{p}\left(s^{\prime}\right)-\mathbf{p}(s) \approx\left(\mathbf{p}(s)+\mathbf{p}^{\prime}(s) \Delta s\right)-\mathbf{p}(s)=\mathbf{p}^{\prime}(s) \Delta s \quad \Longrightarrow \quad\left|\mathbf{p}\left(s^{\prime}\right)-\mathbf{p}(s)\right|=|\Delta \mathbf{p}|=\Delta s$.

Therefore, in the local region, the ratio of the length between two points on the Gauss circle and curve, i.e., $\left|\Delta \mathbf{e}_{2}\right| /|\Delta \mathbf{p}|$ can be calculate by

$$
\begin{equation*}
\frac{\left|\mathbf{e}_{2}\left(s^{\prime}\right)-\mathbf{e}_{2}(s)\right|}{\left|\mathbf{p}\left(s^{\prime}\right)-\mathbf{p}(s)\right|}=\frac{\left|\Delta \mathbf{e}_{2}\right|}{|\Delta \mathbf{p}|}=\frac{\kappa(s) \Delta s}{\Delta s}=\kappa(s), \tag{26}
\end{equation*}
$$

which measure the curvature of a curve, $\kappa(s)$, at the neighborhood of a local point \mathbf{p}.
According to the example of circle, we assume a vector $\mathbf{q}=\mathbf{p}+r \mathbf{e}_{2}=\mathbf{p}+(1 / \kappa) \mathbf{e}_{2}$. The derivative of \mathbf{q} is

$$
\begin{equation*}
\mathbf{q}^{\prime}=\mathbf{p}^{\prime}+\frac{1}{\kappa} \mathbf{e}_{2}^{\prime}=\mathbf{e}_{1}+\frac{1}{\kappa}\left(-\kappa \mathbf{e}_{1}\right)=0, \tag{27}
\end{equation*}
$$

which means that \mathbf{q} is fixed, i.e., \mathbf{q} is the center of the osculating circle with radius $1 / \kappa$. By considering the Gauss map of a circle. The radius vector should be \mathbf{e}_{2} and the center \mathbf{c} of Gauss circle corresponds to the point \mathbf{q} of the osculating circle which is the circle itself. Thus, the Gauss circle can be imaged by rescaling the radius of osculating circle to unity.

Example (Curvature of ellipse). An ellipse is described by $\mathbf{p}(t)=(x(t), y(t))$ with the parametrization of the coordinates $x(t)=a \cos t$ and $y(t)=b \sin t(a>b>0)$, i.e.,

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\cos ^{2} t+\sin ^{2} t=1 \tag{28}
\end{equation*}
$$

Figure 4: An ellipse.
The tangent vector is

$$
\begin{equation*}
\dot{\mathbf{p}}(t)=(-a \sin t, b \cos t) \tag{29}
\end{equation*}
$$

By changing the parameter to s, we have to calculate $d s / d t$ first:

$$
\begin{equation*}
\frac{d s}{d t}=|\dot{\mathbf{p}}|=\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t} \quad \Longrightarrow \quad \frac{d t}{d s}=\frac{1}{\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t}}=\frac{1}{\dot{s}} \tag{30}
\end{equation*}
$$

Therefore, the tangent vector parametrized by s is obtained by

$$
\begin{align*}
\mathbf{e}_{1} & =\mathbf{p}^{\prime}=\frac{d \mathbf{p}}{d t} \frac{d t}{d s} \\
& =\left(\frac{-a \sin t}{\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t}}, \frac{b \cos t}{\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t}}\right)=\left(\frac{-a \sin t}{\dot{s}}, \frac{b \cos t}{\dot{s}}\right), \tag{31}
\end{align*}
$$

Subsequently, we have

$$
\begin{equation*}
\mathbf{e}_{2}=\left(\frac{-b \cos t}{\dot{s}}, \frac{-a \sin t}{\dot{s}}\right) \tag{32}
\end{equation*}
$$

However

$$
\begin{equation*}
\mathbf{e}_{1}^{\prime}=\frac{d \mathbf{e}_{1}}{d s}=\frac{d \mathbf{e}_{1}}{d t} \frac{d t}{d s}=\kappa \mathbf{e}_{2} . \tag{33}
\end{equation*}
$$

As a result, the curvature is

$$
\begin{equation*}
\kappa(t)=\frac{a b}{\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)^{3 / 2}} . \tag{34}
\end{equation*}
$$

If we consider the particular case of $a=b$, an ellipse reduce to a circle with curvature $\kappa=1 / a$.

2 Curve in \mathbb{E}^{3}

In \mathbb{E}^{3}, a curve is parametrized as $\mathbf{p}(t)=(x(t), y(t), z(t))$ and we have to look for an orthonormal frame at p denoted by $\left(\mathbf{p} ; \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ The vector $\mathbf{e}_{1}=\mathbf{p}^{\prime}$ is uniquely defined by the same way. Due to $\mathbf{e}_{1}^{\prime} \perp \mathbf{e}_{1}$, vector \mathbf{e}_{1}^{\prime} should be proportional to \mathbf{e}_{2} or \mathbf{e}_{3}. Now we can fix $\mathbf{e}_{1}^{\prime}=\kappa \mathbf{e}_{2}$ as the previous section.

Binormal vector Now we define a unit vector orthogonal to \boldsymbol{T} and \boldsymbol{N} called binormal vector

$$
\begin{align*}
\boldsymbol{B} & :=\boldsymbol{T} \wedge \boldsymbol{N} \tag{35}\\
& \equiv \mathbf{e}_{1} \wedge \mathbf{e}_{2}:=\mathbf{e}_{3},
\end{align*}
$$

where \wedge is the exterior product or wedge product.

Remark. In 3-dimensional space, the exterior product \wedge is the same to the usual cross product \times of two vectors.

By orthonormality condition $\mathbf{e}_{i} \cdot \mathbf{e}_{j}=\delta_{i j}(i, j=1,2,3)$, we have

$$
\begin{equation*}
\mathbf{e}_{i}^{\prime} \cdot \mathbf{e}_{j}+\mathbf{e}_{i} \cdot \mathbf{e}_{j}^{\prime}=0, \tag{36}
\end{equation*}
$$

which implies:
(i) If $i=j$, we have $\mathbf{e}_{i}^{\prime} \perp \mathbf{e}_{i}, \mathbf{e}_{2}^{\prime}$ should be the combination of \mathbf{e}_{1} and \mathbf{e}_{3}.
(ii) If $i \neq j$, we have

$$
\left\{\begin{array}{lll}
0=\mathbf{e}_{1}^{\prime} \cdot \mathbf{e}_{2}+\mathbf{e}_{1} \cdot \mathbf{e}_{2}^{\prime}=\left(\kappa \mathbf{e}_{2}\right) \cdot \mathbf{e}_{2}+\mathbf{e}_{1} \cdot \mathbf{e}_{2}^{\prime}=\kappa+\mathbf{e}_{1} \cdot \mathbf{e}_{2}^{\prime} & (i=1, j=2), \tag{37a}\\
0=\mathbf{e}_{1}^{\prime} \cdot \mathbf{e}_{3}+\mathbf{e}_{1} \cdot \mathbf{e}_{3}^{\prime}=\left(\kappa \mathbf{e}_{2}\right) \cdot \mathbf{e}_{3}+\mathbf{e}_{1} \cdot \mathbf{e}_{3}^{\prime}=0+\mathbf{e}_{1} \cdot \mathbf{e}_{3}^{\prime} & (i=1, j=3) .
\end{array}\right.
$$

Therefore, with the result (37a), we have to assume that

$$
\begin{equation*}
\mathbf{e}_{2}^{\prime}=-\kappa(s) \mathbf{e}_{1}+\tau(s) \mathbf{e}_{3} . \tag{38}
\end{equation*}
$$

By comparing to (13d), it contains an additional term related to \mathbf{e}_{3}. For $i=2, j=3$, we obtain

$$
\begin{equation*}
0=\mathbf{e}_{2}^{\prime} \cdot \mathbf{e}_{3}+\mathbf{e}_{2} \cdot \mathbf{e}_{3}^{\prime}=\left(-\kappa \mathbf{e}_{1}+\tau \mathbf{e}_{3}\right) \cdot \mathbf{e}_{3}+\mathbf{e}_{2} \cdot \mathbf{e}_{3}^{\prime}=\tau+\mathbf{e}_{2} \cdot \mathbf{e}_{3}^{\prime} . \tag{39}
\end{equation*}
$$

Due to (i) and (37b), \mathbf{e}_{3}^{\prime} should be perpendicular to \mathbf{e}_{1} and \mathbf{e}_{3}. As a result, we obtain the unique solution that

$$
\begin{equation*}
\mathbf{e}_{3}^{\prime}=-\tau \mathbf{e}_{2} \tag{40}
\end{equation*}
$$

where $\tau(s)$ is called torsion of a curve $\mathbf{p}(s)$. The geometric meaning of torsion is that it make the point of the curve leave for the osculating plane spanned by \mathbf{e}_{1} and \mathbf{e}_{2}.

Remark. Apparently, the torsion of a curve is always related to the binormal vector $\boldsymbol{B} \equiv \mathbf{e}_{3}$.

Frenet-Serret formula in 3D As a result, we have Frenet-Serret formula:

$$
\left\{\begin{array}{lll}
\mathbf{p}^{\prime}= & +\mathbf{e}_{1} & \tag{41}\\
\mathbf{e}_{1}^{\prime}= & & +\kappa \mathbf{e}_{2} \\
\mathbf{e}_{2}^{\prime}= & -\kappa \mathbf{e}_{1} & \\
\mathbf{e}_{3}^{\prime}= & & -\tau \mathbf{e}_{3}
\end{array} \Longrightarrow\left(\begin{array}{c}
\mathbf{p}^{\prime} \\
\mathbf{e}_{1}^{\prime} \\
\mathbf{e}_{2}^{\prime} \\
\hdashline \mathbf{e}_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{cc:c}
1 & 0 & 0 \\
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
\hdashline 0 & -\tau & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\hdashline \mathbf{e}_{3}
\end{array}\right) .\right.
$$

Remark. If one defines $\boldsymbol{B}:=\boldsymbol{N} \wedge \boldsymbol{T}$, then one should assume $\mathbf{e}_{2}^{\prime}=-\kappa(s) \mathbf{e}_{1}-\tau(s) \mathbf{e}_{3}$ and obtain $\mathbf{e}_{3}^{\prime}=+\tau \mathbf{e}_{2}$.

Parametrization of a curve in a neighborhood of s_{0} One can do the Taylor expansion of $\mathbf{p}(s)$ at s_{0}.

- First order:

$$
\begin{equation*}
\mathbf{p}(s) \approx \mathbf{p}\left(s_{0}\right)+\left.\frac{d \mathbf{p}}{d s}\right|_{s=s_{0}}\left(s-s_{0}\right)=\mathbf{p}\left(s_{0}\right)+\mathbf{e}_{1}\left(s_{0}\right)\left(s-s_{0}\right) \tag{42}
\end{equation*}
$$

- Second order:

$$
\begin{align*}
\mathbf{p}(s) & \approx \mathbf{p}\left(s_{0}\right)+\mathbf{p}^{\prime}\left(s_{0}\right)\left(s-s_{0}\right)+\frac{1}{2!} \mathbf{p}^{\prime \prime}\left(s_{0}\right)\left(s-s_{0}\right)^{2} \\
& =\mathbf{p}\left(s_{0}\right)+\mathbf{e}_{1}\left(s_{0}\right)\left(s-s_{0}\right)+\frac{1}{2} \kappa\left(s_{0}\right) \mathbf{e}_{2}\left(s_{0}\right)\left(s-s_{0}\right)^{2} \tag{43}
\end{align*}
$$

- Third order:

$$
\begin{align*}
\mathbf{p}(s) \approx & \mathbf{p}\left(s_{0}\right)+\mathbf{p}^{\prime}\left(s_{0}\right)\left(s-s_{0}\right)+\frac{1}{2!} \mathbf{p}^{\prime \prime}\left(s_{0}\right)\left(s-s_{0}\right)^{2}+\frac{1}{3!} \underbrace{\mathbf{p}^{\prime \prime \prime}\left(s_{0}\right)}_{\mathbf{p}^{\prime \prime \prime}=\left(\mathbf{p}^{\prime \prime}\right)^{\prime}=\kappa^{\prime} \mathbf{e}_{2}+\kappa \kappa_{2}^{\prime}=\kappa^{\prime} \mathbf{e}_{2}+\kappa\left(-\kappa \mathbf{e}_{1}+\tau \mathbf{e}_{3}\right)}\left(s-s_{0}\right)^{3} \\
= & \mathbf{p}\left(s_{0}\right)+\mathbf{e}_{1}\left(s_{0}\right)\left(s-s_{0}\right)+\frac{1}{2} \kappa\left(s_{0}\right) \mathbf{e}_{2}\left(s_{0}\right)\left(s-s_{0}\right)^{2} \\
& +\frac{1}{6}(-\kappa^{2}\left(s_{0}\right) \mathbf{e}_{1}\left(s_{0}\right)+\kappa^{\prime}\left(s_{0}\right) \mathbf{e}_{2}\left(s_{0}\right)+\underbrace{\kappa\left(s_{0}\right) \tau\left(s_{0}\right) \mathbf{e}_{3}\left(s_{0}\right)}_{\text {leading term }})\left(s-s_{0}\right)^{3} .
\end{align*}
$$

We only consider the leading term in the third order expansion, then we have

$$
\begin{equation*}
\mathbf{p}(s) \approx \mathbf{p}\left(s_{0}\right)+\mathbf{e}_{1}\left(s_{0}\right)\left(s-s_{0}\right)+\frac{1}{2} \kappa(s) \mathbf{e}_{2}\left(s_{0}\right)\left(s-s_{0}\right)^{2}+\frac{1}{6}\left(\kappa\left(s_{0}\right) \tau\left(s_{0}\right) \mathbf{e}_{3}\left(s_{0}\right)\right)\left(s-s_{0}\right)^{3} \tag{45}
\end{equation*}
$$

Example (Helix in \mathbb{E}^{3}). A helix is parametrized as $\mathbf{p}=(x(t), y(y), z(t))$ with

$$
\left\{\begin{array}{l}
x(t)=a \cos t, \tag{46}\\
y(t)=a \sin t, \\
z(t)=b t
\end{array}\right.
$$

The tangent vector and the corresponding norm are

$$
\begin{equation*}
\dot{\mathbf{p}}=(\dot{x}, \dot{y}, \dot{z})=(-a \sin t, a \cos t, b) \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
|\dot{\mathbf{p}}|=\sqrt{a^{2} \sin ^{2} t+a^{2} \cos ^{2} t+b^{2}}=\sqrt{a^{2}+b^{2}}=\dot{s} \tag{48}
\end{equation*}
$$

The relation of s and t can be obtained by

$$
\begin{equation*}
s(t)=\int_{0}^{t} \frac{d s}{d t^{\prime}} d t^{\prime}=\int_{0}^{t} \sqrt{a^{2}+b^{2}} d t^{\prime}:=c t \quad \Longrightarrow \quad t=\frac{s}{c} . \tag{49}
\end{equation*}
$$

Figure 5: A helix.
Subsequently, we have tangent vector

$$
\begin{equation*}
\mathbf{e}_{1}=\mathbf{p}^{\prime}=\left(-\frac{a}{c} \sin \frac{s}{c}, \frac{a}{c} \cos \frac{s}{c}, \frac{b}{c}\right) \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{e}_{1}^{\prime}=\mathbf{p}^{\prime \prime}=\left(-\frac{a}{c^{2}} \cos \frac{s}{c},-\frac{a}{c^{2}} \sin \frac{s}{c}, 0\right) . \tag{51}
\end{equation*}
$$

So the curvature is

$$
\begin{equation*}
\kappa=\left|\mathbf{e}_{1}^{\prime}\right|=\frac{a}{c^{2}}=\frac{a}{a^{2}+b^{2}} . \tag{52}
\end{equation*}
$$

and the normal vector can be obtained by

$$
\begin{equation*}
\mathbf{e}_{1}^{\prime}=\kappa \mathbf{e}_{2} \quad \Longrightarrow \quad \mathbf{e}_{2}=\left(-\cos \frac{s}{c},-\sin \frac{s}{c}, 0\right) \tag{53}
\end{equation*}
$$

Finally, we have binormal vector

$$
\begin{equation*}
\mathbf{e}_{3}=\mathbf{e}_{1} \wedge \mathbf{e}_{2}=\left(\frac{b}{c} \sin \frac{s}{c},-\frac{b}{c} \cos \frac{s}{c}, \frac{a}{c}\right) . \tag{54}
\end{equation*}
$$

Due to

$$
\begin{equation*}
\mathbf{e}_{3}^{\prime}=\left(\frac{b}{c^{2}} \cos \frac{s}{c}, \frac{b}{c^{2}} \sin \frac{s}{c}, 0\right), \tag{55}
\end{equation*}
$$

we can calculate the torsion of $\mathbf{p}(s)$ form (40):

$$
\begin{equation*}
\tau=\frac{b}{c^{2}}=\frac{b}{a^{2}+b^{2}} . \tag{56}
\end{equation*}
$$

3 Surface theory in \mathbb{E}^{3}

We consider a 2-dimensional surface \mathcal{M} in \mathbb{E}^{3}, we parametrize the surface by two variables u and v written as $\mathbf{p}(u, v)=(x(u, v), y(u, v), z(u, v))$.

Remark. If the point $\mathbf{p}(u, v)$ moves along u direction, i.e., parametrized by u only, we call the trajectory u-curve. The infinitesimal vector along u is

$$
\begin{equation*}
\left.\Delta \mathbf{p}\right|_{u}=\mathbf{p}(u+\Delta u, v)-\mathbf{p}(u, v) \approx \mathbf{p}(u, v)+\frac{\partial \mathbf{p}(u, v)}{\partial u} \Delta u-\mathbf{p}(u, v)=\mathbf{p}_{u} \Delta u \tag{57}
\end{equation*}
$$

Similarly, we have v-curve along v direction and

$$
\begin{equation*}
\left.\Delta \mathbf{p}\right|_{v} \approx \mathbf{p}_{v} \Delta v \tag{58}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\Delta \mathbf{p} \approx \mathbf{p}_{u} \Delta u+\mathbf{p}_{v} \Delta v . \tag{59}
\end{equation*}
$$

Tangent vector The differential of \mathbf{p} is

$$
\begin{equation*}
d \mathbf{p}=(d x, d y, d z) \tag{60}
\end{equation*}
$$

with

$$
\left\{\begin{align*}
d x & =\frac{\partial x}{\partial u} d u+\frac{\partial x}{\partial v} d v=x_{u} d u+x_{v} d v \tag{61}\\
d y & =\frac{\partial y}{\partial u} d u+\frac{\partial y}{\partial v} d v=y_{u} d u+y_{v} d v \\
d z & =\frac{\partial z}{\partial u} d u+\frac{\partial z}{\partial v} d v=z_{u} d u+z_{v} d v
\end{align*}\right.
$$

where $x_{u}:=\partial x / \partial u$. Therefore, we can write $d \mathbf{p}$ as

$$
\begin{equation*}
d \mathbf{p}=\frac{\partial \mathbf{p}}{\partial u} d u+\frac{\partial \mathbf{p}}{\partial v} d v:=\mathbf{p}_{u} d u+\mathbf{p}_{v} d v \tag{62}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\mathbf{p}_{u}:=\left(x_{u}, y_{u}, z_{u}\right) \tag{63}\\
\mathbf{p}_{v}:=\left(x_{v}, y_{v}, z_{v}\right)
\end{array}\right.
$$

are called velocity vectors along u and v respectively.
Remark. The vector \mathbf{p} in \mathbb{E}^{3} in the Cartesian coordinate system can be written as

$$
\begin{equation*}
\mathbf{p}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}:=x^{a} \delta_{a} \quad(a=1,2,3), \tag{64}
\end{equation*}
$$

where $\left\{\delta_{a}\right\}$ is a fixed reference frame of \mathbb{E}^{3}. So that we have differential

$$
\begin{equation*}
d \mathbf{p}=\left(d x^{a}\right) \delta_{a}+x^{a}\left(d \delta_{a}\right) . \tag{65}
\end{equation*}
$$

Because δ_{a} is fixed, i.e. $d \delta_{a}=0$, it leads to the differential of \mathbf{p}

$$
\begin{equation*}
d \mathbf{p}=\left(d x^{a}\right) \delta_{a}=(d x, d y, d z) \tag{66}
\end{equation*}
$$

The general situation for non-fixed frame in space \mathcal{M}^{n} will be discussed in the Sec. 4 of moving frame.

Tangent space We call a space spanned by \mathbf{p}_{u} and \mathbf{p}_{v} at point \mathbf{p} a tangent space denoted by $T_{\mathbf{p}} \mathcal{M}$.
Supplement (Tangent bundle). In tangent space with dimension 2, a vector V has a generalized coordinate transformation $G L(2 ; \mathbb{R})$, which is $\widetilde{u}^{i}=\widetilde{u}^{i}(u)$ and gives the transformation for vector

$$
\begin{equation*}
V=V^{i} \mathbf{p}_{i}=\widetilde{V}^{j} \widetilde{\mathbf{p}}_{j} . \tag{67a}
\end{equation*}
$$

The transformation of the basis and components are given by

$$
\left\{\begin{array}{l}
\widetilde{\mathbf{p}}_{j}(\widetilde{u})=\frac{\partial u^{i}}{\partial \widetilde{u}^{j}} \mathbf{p}_{i}(u) \quad \text { (Pushforward) }, \tag{67b}\\
V^{i}(u)=\widetilde{V}^{j}(\widetilde{u}) \frac{\partial u^{i}}{\partial \widetilde{u}^{j}} \quad \text { (Pullback), }
\end{array}\right.
$$

where

$$
\begin{equation*}
(\mathbf{J})^{i}{ }_{j}:=\frac{\partial u^{i}}{\partial \widetilde{u}^{j}} \tag{68}
\end{equation*}
$$

is an element of the Jacobian matrix \mathbf{J} of the general linear transformation $G L(2 ; \mathbb{R})$. The map pushforward (pullback) means that the covariant (contravariant) quantities expressed in new (old) coordinate system under the generalized coordinate transformation from old (new) coordinate system.

We can collect all pairs of the points \mathbf{p} on \mathcal{M} and their corresponding tangent space $T_{\mathbf{p}} \mathcal{M}$. A tangent bundle $T \mathcal{M}$ is defined by the collection of $T_{\mathbf{p}} \mathcal{M}$, i.e.,

$$
\begin{equation*}
T \mathcal{M}=\bigcup_{\mathbf{p} \in \mathcal{M}} T_{\mathbf{p}} \mathcal{M} \tag{69}
\end{equation*}
$$

A tangent bundle $T \mathcal{M}$ is a vector bundle denoted by (E, \mathcal{M}, π), which is a special fibre bundle with

- base space B: \mathcal{M};
- standard (typical) fibre F over \mathbf{p} (an object defined at \mathbf{p}): $T_{\mathbf{p}} \mathcal{M}$;
- total space E: a collection of all $T_{\mathbf{p}} \mathcal{M}$;
- bundle projection π (an element \mathbf{u} of bundle is projected by the fibre to the corresponding point $\mathbf{p}): \pi(\mathbf{u})=\mathbf{p}$ for $\mathbf{u} \in T \mathcal{M}$;
- structure group $G: G L(2 ; \mathbb{R})$;
- transition function $t^{i}{ }_{j}$: Jacobian matrix \mathbf{J} of $G L(2 ; \mathbb{R})$,
and we call $E_{\mathbf{p}}=\pi^{-1}(\mathbf{p})$ the fibre of E over point \mathbf{p}.

First fundamental (quadratic) form we define

$$
\begin{align*}
\mathbf{I} & :=d \mathbf{p} \cdot d \mathbf{p} \tag{70a}\\
& =\underbrace{\mathbf{p}_{u} \cdot \mathbf{p}_{u}}_{E} d u d u+2 \underbrace{\mathbf{p}_{u} \cdot \mathbf{p}_{v}}_{F} d u d v+\underbrace{\mathbf{p}_{v} \cdot \mathbf{p}_{v}}_{G} d v d v \\
& =E d u d u+2 F d u d v+G d u d v \tag{70b}\\
& =\left(\begin{array}{ll}
d u & d v
\end{array}\right)\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)\binom{d u}{d v} . \tag{70c}
\end{align*}
$$

called the first fundamental form or metric tensor of surface \mathcal{M}, which is a symmetric quadratic form rather than an exterior 2 -form.

Remark. In the case of $F=0$, the first fundamental form is

$$
\begin{align*}
\mathbf{I} & =E d u d u+G d v d v \tag{71a}\\
& =\left(\begin{array}{ll}
d u & d v
\end{array}\right)\left(\begin{array}{cc}
E & 0 \\
0 & G
\end{array}\right)\binom{d u}{d v} . \tag{71b}
\end{align*}
$$

In such case, we call (u, v) an isothermal coordinates if $E=G$. Therefore, the component of metric is

$$
\begin{equation*}
g_{i j}=E \delta_{i j} \quad \text { with } \quad E=\mathbf{p}_{i} \cdot \mathbf{p}_{i}=\left|\mathbf{p}_{i}\right|^{2}>0, \tag{72}
\end{equation*}
$$

and we say that $g_{i j}$ is conformally equivalent to $\delta_{i j}$, which preserved the angle between any two vectors. Because $\delta_{i j}$ gives the flat space, we say that $g_{i j}$ is conformally flat.

We consider a curve on the surface, that means u and v should be parametrized by one variable t, i.e., $u=u(t)$ and $v=v(t)$. The curve $\mathbf{p}(t)=\mathbf{p}(u(t), v(t))$. The tangent vector is obtained by

$$
\begin{equation*}
\dot{\mathbf{p}}=\frac{\partial \mathbf{p}}{\partial u} \frac{d u}{d t}+\frac{\partial \mathbf{p}}{\partial v} \frac{d v}{d t}=\mathbf{p}_{u} \dot{u}+\mathbf{p}_{v} \dot{v} \tag{73}
\end{equation*}
$$

and the corresponding norm is

$$
\begin{equation*}
|\dot{\mathbf{p}}|=\sqrt{E \dot{u}^{2}+2 F \dot{u} \dot{v}+G \dot{v}^{2}} . \tag{74}
\end{equation*}
$$

We would like to calculate the arc length of a curve by

$$
\begin{align*}
s & =\int d s=\int|\dot{\mathbf{p}}| d t \tag{75}\\
& =\int \underbrace{\sqrt{E d u^{2}+2 F d u d v+G d v^{2}}}_{\sqrt{d s^{2}}} \tag{76}\\
& =\int \underbrace{\sqrt{E u^{\prime 2}+2 F u^{\prime} v^{\prime}+G v^{\prime 2}}}_{1} d s=\int\left|\mathbf{p}^{\prime}\right| d s . \tag{77}
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
\left|\mathbf{p}^{\prime}\right|=1 \tag{78}
\end{equation*}
$$

We would alwalys write the first fundamental form with $u=u^{1}$ and $v=u^{2}$ as

$$
\begin{equation*}
\mathbf{I} \equiv d s^{2} \equiv g=g_{i j} d u^{i} d u^{j} \quad(i, j=1,2), \tag{79}
\end{equation*}
$$

where

$$
g_{i j}=\mathbf{p}_{i} \cdot \mathbf{p}_{j} \longrightarrow\left(\begin{array}{ll}
E & F \tag{80}\\
F & G
\end{array}\right)
$$

is the metric tensor represented as a 2×2 matrix on the surface \mathcal{M}. The inverse of $g_{i j}$ is defined by

$$
\begin{equation*}
g^{k i} g_{i j}=\delta_{j}^{k} . \tag{81}
\end{equation*}
$$

Remark. The first fundamental form describes the distance of two points on the surface \mathcal{M}, which gives the intrinsic structure of \mathcal{M}.

Supplement (Induced metric). We can regard \mathbf{p} as a set of functions defined on the surface \mathcal{M}, the differential of \mathbf{p} is actually an infinitesimal tangent vector laid on \mathcal{M}

$$
\begin{equation*}
d \mathbf{p}=\frac{\partial \mathbf{p}}{\partial u} d u+\frac{\partial \mathbf{p}}{\partial v} d v=\left(d u \frac{\partial}{\partial u}+d v \frac{\partial}{\partial u}\right) \mathbf{p}=\left(d u^{i} \partial_{i}\right) \mathbf{p} \tag{82}
\end{equation*}
$$

which can be identified as differential operator $d u^{i} \partial_{i}$ act on a set of functions \mathbf{p}. In abbreviated notation, we have

$$
\begin{equation*}
d \mathbf{p}=d u^{i} \partial_{i}=d u^{i} \otimes \partial_{i}:=\vartheta \quad\left(\mathbf{p}_{i} \longrightarrow \partial_{i}\right) \tag{83}
\end{equation*}
$$

where we use ∂_{i} to abbreviate the basis vector $\mathbf{p}_{i}=\partial_{i} \mathbf{p}$, i.e., the vector ∂_{i} should be regarded as a differential operator act on some functions. Here we call $\vartheta=d \mathbf{p}$ the canonical 1-form or soldering form, which is a vector-valued 1-form (1-form carries a vector). For any vector $\boldsymbol{V}=V^{k} \partial_{k}$ on \mathcal{M}, we apply ϑ on \boldsymbol{V} and obtain

$$
\begin{equation*}
\vartheta(\boldsymbol{V})=V^{k} d u^{i}\left(\partial_{k}\right) \partial_{i}=V^{k} \delta_{k}^{i} \partial_{i}=V^{i} \partial_{i}=\boldsymbol{V} . \tag{84}
\end{equation*}
$$

It is apparent that ϑ is an identity map for a vector.

Now we will define the general inner product for two basis vectors ∂_{i} and ∂_{j} instead of dot product as

$$
\begin{equation*}
g\left(\partial_{i}, \partial_{j}\right):=g_{i j} . \tag{85}
\end{equation*}
$$

Therefore, for any two vectors $\boldsymbol{V}=V^{i} \partial_{i}$ and $\boldsymbol{W}=W^{j} \partial_{j}$ on \mathcal{M}, we have

$$
\begin{equation*}
g(\boldsymbol{V}, \boldsymbol{W})=g\left(V^{i} \partial_{i}, W^{j} \partial_{j}\right)=V^{i} W^{j} g\left(\partial_{i}, \partial_{j}\right)=V^{i} W^{j} g_{i j}=V_{j} W^{j}=V^{i} W_{i} . \tag{86}
\end{equation*}
$$

In general we also have

$$
\begin{equation*}
\bar{g}\left(\partial_{a}, \partial_{b}\right):=\bar{g}_{a b}, \tag{87}
\end{equation*}
$$

where

$$
\begin{equation*}
\partial_{a}:=\frac{\partial}{\partial x^{a}} \quad(a, b=1,2,3) . \tag{88}
\end{equation*}
$$

We call $\left\{x^{a}\right\}$ the Gauss normal coordinates or synchronous coordinates if $\bar{g}_{i 3}=0$ and $\bar{g}_{33}=1$, i.e., ∂_{3} is an unit normal vector of \mathcal{M}, which is proportional to \mathbf{n}.

Furthermore, we can define a metric tensor

$$
\begin{equation*}
\bar{g}=\bar{g}_{a b} d x^{a} d x^{b}=\delta_{a b} d x^{a} d x^{b}=d s^{2} \tag{89}
\end{equation*}
$$

as a line inteval of \mathbb{E}^{3}, and it is clear that $\bar{g}_{i 3}$ is one of the component of \bar{g}. If we assume that $x^{1}=x=x(u, v), x^{2}=y=y(u, v)$ and $x^{3}=z=z(u, v)$ on \mathcal{M}. We have basis vectors $\frac{\partial}{\partial u^{i}}$ spanned by $\frac{\partial}{\partial x^{a}}$ as

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial u}=\frac{\partial x}{\partial u} \frac{\partial}{\partial x}+\frac{\partial y}{\partial u} \frac{\partial}{\partial y}+\frac{\partial z}{\partial u} \frac{\partial}{\partial z}=\frac{\partial x^{a}}{\partial u} \frac{\partial}{\partial x^{a}}, \tag{90}\\
\frac{\partial}{\partial v}=\frac{\partial x}{\partial v} \frac{\partial}{\partial x}+\frac{\partial y}{\partial v} \frac{\partial}{\partial y}+\frac{\partial z}{\partial v} \frac{\partial}{\partial z}=\frac{\partial x^{a}}{\partial v} \frac{\partial}{\partial x^{a}},
\end{array} \quad \Longrightarrow \quad \frac{\partial}{\partial u^{i}}=\frac{\partial x^{a}}{\partial u^{i}} \frac{\partial}{\partial x^{a}}:=h^{a}{ }_{i} \frac{\partial}{\partial x^{a}}\right.
$$

where $h^{a}{ }_{i}$ is a projection operator of the vector in \mathbb{E}^{3} and $i, j=1,2$. The component of metric tensor g of \mathcal{M} can be given by

$$
\begin{equation*}
g_{i j}=g\left(\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{j}}\right) \equiv \bar{g}\left(h^{a}{ }_{i} \frac{\partial}{\partial x^{a}}, h^{b}{ }_{j} \frac{\partial}{\partial x^{b}}\right)=h^{a}{ }_{i} h^{b}{ }_{j} \bar{g}\left(\frac{\partial}{\partial x^{a}}, \frac{\partial}{\partial x^{b}}\right)=h^{a}{ }_{i} h^{b}{ }_{j} \bar{g}_{a b}, \tag{91}
\end{equation*}
$$

which is the projection of $\bar{g}_{a b}$ of \mathbb{E}^{3} onto \mathcal{M}. We can define an projection operation \mathbf{P} of differential $d x^{a}$ in \mathbb{E}^{3} onto \mathcal{M} which is called the pullback (a map for contravariant quantities) of 1-form $d x^{a}$:

$$
\begin{equation*}
\mathbf{P}\left(d x^{a}\right)=\frac{\partial x^{a}}{\partial u^{i}} d u^{i}=h^{a}{ }_{i} d u^{i}, \tag{92}
\end{equation*}
$$

i.e., $\mathbf{P}\left(d x^{a}\right)$ can be spanned by $d u^{i}$ on \mathcal{M}. As a consequence, a line inteval $\left.d s^{2}\right|_{\mathcal{M}}=\mathbf{P}(\bar{g})$ on \mathcal{M} is obtained by

$$
\begin{equation*}
\mathbf{P}(\bar{g})=\mathbf{P}\left(\bar{g}_{a b} d x^{a} d x^{b}\right)=\bar{g}_{a b}\left(h^{a}{ }_{i} h^{b}{ }_{j} d u^{i} d u^{j}\right)=\left(\bar{g}_{a b} h^{a}{ }_{i} h^{b}{ }_{j}\right) d u^{i} d u^{j}:=g_{i j} d u^{i} d u^{j}=g=\mathbf{I} . \tag{93}
\end{equation*}
$$

Therefore, the first fundamental form $\mathbf{I}=g=\left.d s^{2}\right|_{\mathcal{M}}$ of \mathcal{M} can be regarded as a projection of metric tensor \bar{g} with

$$
\begin{equation*}
g_{i j}:=\bar{g}_{a b} h^{a}{ }_{i} h^{b}{ }_{j}=\bar{g}_{a b} \frac{\partial x^{a}}{\partial u^{i}} \frac{\partial x^{b}}{\partial u^{j}} . \tag{94}
\end{equation*}
$$

We called that g is a induced metric obtained by the pullback of \bar{g}.

Supplement (Interior product). We define an anti-derivation on exterior differential p-forms ω for a vector \boldsymbol{X} called interior product with respect to \boldsymbol{X}. It sends an exterior p-form to an exterior ($p-1$)-form. We consider an 1-forms ω, the interior product of ω with respect to a vector \boldsymbol{X} is

$$
\begin{align*}
\left.\iota_{\boldsymbol{X}} \omega \stackrel{\text { or }}{=} \boldsymbol{X}\right\rfloor \omega & :=\omega(\boldsymbol{X}) \tag{95a}\\
& =X^{i} \omega_{j} d u^{j}\left(\partial_{i}\right)=X^{i} \omega_{j} \delta_{i}^{j}=X^{j} \omega_{j} \tag{95b}
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
\iota_{\partial_{i}}\left(d u^{j}\right)=d u^{j}\left(\partial_{i}\right)=\delta_{i}^{j} . \tag{96}
\end{equation*}
$$

We note that:

- For 0 -form f (a scalar), the interior product is vanished $\iota_{\boldsymbol{X}} f=0$ because of no (-1)-form.
- The second action of $\iota_{\boldsymbol{X}}^{2}=0$. It can be shown that by considering an exterior 3-form $\omega=$ $(1 / 3!) \omega_{i j k} d u^{i} \wedge d u^{j} \wedge d u^{k}$, we have vanished second interior product by \boldsymbol{X}

$$
\begin{align*}
\iota_{\boldsymbol{X}}^{2} \omega= & \iota_{\boldsymbol{X}} \iota_{\boldsymbol{X}}\left(\frac{1}{3!} \omega_{i j k} d u^{i} \wedge d u^{j} \wedge d u^{k}\right) \\
= & \iota_{\boldsymbol{X}}\left(\frac { 1 } { 3 ! } X ^ { k } \omega _ { i j k } \left(d u^{i}\left(\partial_{l}\right) d u^{j} \wedge d u^{k}\right.\right. \\
& \left.\left.\quad+(-1)^{1} d u^{i} \wedge d u^{j}\left(\partial_{l}\right) d u^{k}+(-1)^{2} d u^{i} \wedge d u^{j} d u^{k}\left(\partial_{l}\right)\right)\right) \\
= & \iota_{\boldsymbol{X}}(\frac{1}{3!} X^{l}(\omega_{l j k} d u^{j} \wedge d u^{k}-\underbrace{\omega_{i l k}}_{-\omega_{l i k}} d u^{i} \wedge d u^{k}+\underbrace{\omega_{i j l}}_{+\omega_{l i j}} d u^{i} \wedge d u^{j})) \\
= & \iota_{\boldsymbol{X}}\left(\frac{1}{2} X^{l} \omega_{l j k} d u^{j} \wedge d u^{k}\right) \\
= & X^{m} X^{l}\left(\frac{1}{2} \omega_{l j k}\left(d u^{j}\left(\partial_{m}\right) d u^{k}+(-1)^{1} d u^{j} d u^{k}\left(\partial_{m}\right)\right)\right) \\
= & X^{m} X^{l}(\frac{1}{2} \omega_{l m k} d u^{k}-\underbrace{\omega_{l j m}}_{-\omega_{l m j}} d u^{j})=\overbrace{X^{m} X^{l}}^{\text {symmetric in } l, m} \underbrace{\omega_{l m k}}_{\text {anti-symmetric in } l, m} d u^{k}=0 . \tag{97}
\end{align*}
$$

However, $\iota_{\boldsymbol{Y}} \iota_{\boldsymbol{X}} \neq 0$, e.g. the interior product of an exterior 3-form ω by \boldsymbol{X} and \boldsymbol{Y} should be an 1 -form $Y^{m} X^{l} \omega_{l m k} d u^{k} \neq 0$.

Supplement (Isomorphism between tangent and cotangent space). The 1 -form $d u^{i}$ is defined on the cotangent space which is dual to the basis $\frac{\partial}{\partial u^{i}} \equiv \partial_{i}$ on the tangent space. We can define a linear map $\psi: T \mathcal{M} \longrightarrow T^{*} \mathcal{M}$. For vectors $\boldsymbol{X}, \boldsymbol{Y} \in T \mathcal{M}$ and $\alpha \in T^{*} \mathcal{M}$ the 1-form corresponding to vector \boldsymbol{X}, then we define

$$
\begin{equation*}
\langle\alpha, \boldsymbol{Y}\rangle:=\alpha(\boldsymbol{Y})=\iota_{\boldsymbol{Y}} \alpha=g(\boldsymbol{X}, \boldsymbol{Y}), \tag{98}
\end{equation*}
$$

where the $\langle\bullet, \bullet\rangle$ with two slots is a kind of inner product defined between the tangent and cotangent space and

$$
\begin{equation*}
\alpha:=\psi(\boldsymbol{X}) . \tag{99}
\end{equation*}
$$

Therefore, we can also write the corresponding 1-form α as

$$
\begin{equation*}
\alpha(\bullet)=g(\boldsymbol{X}, \bullet), \tag{100}
\end{equation*}
$$

which can be recognized by

$$
\begin{align*}
\alpha & :=\frac{1}{2} g_{i j}\left(d u^{i}(\boldsymbol{X}) d u^{j}+d u^{i} d u^{j}(\boldsymbol{X})\right) \\
& =\frac{1}{2} g_{i j} X^{k}\left(d u^{i}\left(\partial_{k}\right) d u^{j}+d u^{i} d u^{j}\left(\partial_{k}\right)\right) \\
& =\frac{1}{2} g_{i j} X^{k}\left(\delta_{k}^{i} d u^{j}+d u^{i} \delta_{k}^{j}\right) \\
& =X_{i} d u^{i} . \tag{101}
\end{align*}
$$

By choosing vector $\boldsymbol{X}=\partial_{i}$, we have an 1-form $\psi\left(\partial_{i}\right)=\psi_{i j} d u^{j}$, which leads to

$$
\begin{equation*}
g_{i j}=g\left(\partial_{i}, \partial_{j}\right)=\left\langle\psi\left(\partial_{i}\right), \partial_{j}\right\rangle=\psi_{i k}\left\langle d u^{k}, \partial_{j}\right\rangle=\psi_{i k} \delta_{j}^{k}=\psi_{i j} . \tag{102}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\psi\left(\partial_{i}\right)=g_{i j} d u^{j}:=d u_{i} \tag{103}
\end{equation*}
$$

called the reciprocal basis of $d u^{i}$ in $T^{*} \mathcal{M}$. It is apparent that $g_{i j}$ transforms $d u^{i}$ to its reciprocal basis $d u_{j}$.

In addition, we have a linear inverse map $\psi^{-1}: T^{*} \mathcal{M} \longrightarrow T \mathcal{M}$ such that

$$
\begin{equation*}
\boldsymbol{X}=\psi^{-1}(\alpha):=\varphi(\alpha) . \tag{104}
\end{equation*}
$$

For $\alpha=d u^{i}$, the inverse map of $d u^{i}$ can be written as $\psi^{-1}\left(d u^{i}\right)=\varphi^{i j} \partial_{j}$. If we take $\alpha=d u^{i}$ and $Y=\partial_{j}$ in (98), then

$$
\begin{equation*}
\delta_{j}^{i}=d u^{i}\left(\partial_{j}\right)=g\left(\varphi^{i k} \partial_{k}, \partial_{j}\right)=\varphi^{i k} g\left(\partial_{k}, \partial_{j}\right)=\varphi^{i k} g_{k j}, \tag{105}
\end{equation*}
$$

therefore, $\varphi^{i k}=g^{i k}$ and

$$
\begin{equation*}
\psi^{-1}\left(d u^{i}\right)=g^{i j} \partial_{j}:=\partial^{i} \tag{106}
\end{equation*}
$$

is the reciprocal basis of ∂_{i}. We assume that $\beta=\psi(\boldsymbol{Y})$ and define the inner product in $T^{*} \mathcal{M}$ which is also denoted by g

$$
\begin{equation*}
g(\alpha, \beta):=g\left(\psi^{-1}(\alpha), \psi^{-1}(\beta)\right) . \tag{107}
\end{equation*}
$$

The definition leads to the following relation by choosing $\alpha=d u^{i}$ and $\beta=d u^{j}$

$$
\begin{equation*}
g\left(d u^{i}, d u^{j}\right)=g\left(\psi^{-1}\left(d u^{i}\right), \psi^{-1}\left(d u^{j}\right)\right)=g\left(\partial^{k}, \partial^{j}\right)=g^{i k} g^{j l} g\left(\partial_{k}, \partial_{l}\right)=g^{i j} . \tag{108}
\end{equation*}
$$

Now we can clearly express a vector $\boldsymbol{X}=X^{i} \partial_{i}$ as an inverse map ψ^{-1} of an 1-form α with the help of (106):

$$
\begin{equation*}
\boldsymbol{X}=X^{i} \partial_{i}=X^{i} g_{i j} \partial^{j}=\underbrace{X_{j} \partial^{j}}_{\text {a vector! }}=X_{j} \psi^{-1}\left(d u^{j}\right)=\psi^{-1}(\underbrace{X_{j} d u^{j}}_{\text {an 1-form! }})=\psi^{-1}(\alpha) . \tag{109}
\end{equation*}
$$

As a result, we conclude that the metric tensor g (not component $g_{i j}$ or $g^{i j}$) turns a vector (1-form) into a 1-form (vector). The component of metric tensor $g^{i j}\left(g_{i j}\right)$ transforms the a vector ∂_{i} (1-form $d u^{i}$) to its corresponding reciprocal basis $\partial^{i}\left(d u_{i}\right)$.

Normal vector of the surface We would like to look for an orthonormal frame $\left(\mathbf{p} ; \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ of \mathcal{M}. Under the Gram-Schmit procedure, we can define

$$
\begin{equation*}
\mathbf{e}_{1}:=\frac{\mathbf{p}_{u}}{\left|\mathbf{p}_{u}\right|} \tag{110}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{e}_{2}:=\frac{\mathbf{p}_{v}-\left(\mathbf{p}_{v} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{1}}{\left|\mathbf{p}_{v}-\left(\mathbf{p}_{v} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{1}\right|} . \tag{111}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\mathbf{e}_{3}=\mathbf{e}_{1} \wedge \mathbf{e}_{2}:=\mathbf{n}, \tag{112}
\end{equation*}
$$

which is an unit normal vector of \mathcal{M}.
The unit normal vector $\mathbf{n}=\mathbf{n}(u, v)$ can also be obtained by

$$
\begin{equation*}
\mathbf{n}(u, v)=\frac{\mathbf{p}_{u} \wedge \mathbf{p}_{v}}{\left|\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right|} \tag{113}
\end{equation*}
$$

The corresponding differential $d \mathbf{n}$ is

$$
\begin{equation*}
d \mathbf{n}=\frac{\partial \mathbf{n}}{\partial u} d u+\frac{\partial \mathbf{n}}{\partial v} d v=\mathbf{n}_{u} d u+\mathbf{n}_{v} d v \tag{114}
\end{equation*}
$$

However, we have:
(i) $\mathbf{n} \perp \mathbf{p}_{u} \Longrightarrow \mathbf{n} \cdot \mathbf{p}_{u}=0$, which have the equations of the partial derivative with respect to u and v are

$$
\left\{\begin{array}{lll}
\partial_{u}: \mathbf{n}_{u} \cdot \mathbf{p}_{u}+\mathbf{n} \cdot \mathbf{p}_{u u}=0 & \Longrightarrow & \mathbf{n} \cdot \mathbf{p}_{u u}=-\mathbf{n}_{u} \cdot \mathbf{p}_{u}:=L, \tag{115a}\\
\partial_{v}: \mathbf{n}_{v} \cdot \mathbf{p}_{u}+\mathbf{n} \cdot \mathbf{p}_{u v}=0 & \Longrightarrow \quad \mathbf{n} \cdot \mathbf{p}_{u v}=-\mathbf{n}_{v} \cdot \mathbf{p}_{u}:=M .
\end{array}\right.
$$

(ii) $\mathbf{n} \perp \mathbf{p}_{v} \Longrightarrow \mathbf{n} \cdot \mathbf{p}_{v}=0$, we obtain

$$
\left\{\begin{array}{rll}
\partial_{u}: \mathbf{n}_{u} \cdot \mathbf{p}_{v}+\mathbf{n} \cdot \mathbf{p}_{v u}=0 & \Longrightarrow & \mathbf{n} \cdot \mathbf{p}_{v u}=-\mathbf{n}_{u} \cdot \mathbf{p}_{v}:=M \tag{116a}\\
\partial_{v}: \mathbf{n}_{v} \cdot \mathbf{p}_{v}+\mathbf{n} \cdot \mathbf{p}_{v v}=0 & \Longrightarrow \quad \mathbf{n} \cdot \mathbf{p}_{v v}=-\mathbf{n}_{v} \cdot \mathbf{p}_{v}:=N .
\end{array}\right.
$$

Second fundamental (quadratic) form According to (62) and (114), we can define a quadratic form

$$
\begin{align*}
\mathbf{I I} & :=-d \mathbf{p} \cdot d \mathbf{n} \tag{117a}\\
& =-\left(\mathbf{p}_{u} d u+\mathbf{p}_{v} d v\right)\left(\mathbf{n}_{u} d u+\mathbf{n}_{v} d v\right) \\
& =-\left(\mathbf{p}_{u} \cdot \mathbf{n}_{u} d u d u+\mathbf{p}_{u} \cdot \mathbf{n}_{v} d u d v+\mathbf{p}_{v} \cdot \mathbf{n}_{u} d u d v+\mathbf{p}_{v} \cdot \mathbf{n}_{v} d v d v\right) \\
& =\underbrace{\mathbf{n} \cdot \mathbf{p}_{u u}}_{L} d u d u+\underbrace{\mathbf{n} \cdot \mathbf{p}_{u v}}_{M} d u d v+\underbrace{\mathbf{n} \cdot \mathbf{p}_{v u}}_{M} d u d v+\underbrace{\mathbf{n} \cdot \mathbf{p}_{v v}}_{N} d v d v \\
& =L d u d u+2 M d u d v+N d u d v \tag{117b}\\
& =\left(\begin{array}{ll}
d u & d v
\end{array}\right)\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)\binom{d u}{d v} \tag{117c}
\end{align*}
$$

called the second fundamental form of \mathcal{M}. We define the second fundamental form as a tensor given by

$$
\begin{equation*}
\mathbf{I I}=b_{i j} d u^{i} d u^{j} \tag{118}
\end{equation*}
$$

with the component of matrix form as

$$
b_{i j}=\mathbf{n} \cdot \mathbf{p}_{i j}=-\mathbf{p}_{i} \cdot \mathbf{n}_{j} \longrightarrow\left(\begin{array}{cc}
L & M \tag{119}\\
M & N
\end{array}\right) .
$$

Remark. The second fundamental form describes the shape of \mathcal{M} and how the surface \mathcal{M} embedded in \mathbb{E}^{3}. It is an extrinsic property of \mathcal{M} and we call the component $b_{i j}$ the extrinsic curvature.

Now we would like to discuss decomposition formulas of the derivative vector of frame $\left(\mathbf{p} ; \mathbf{p}_{u}, \mathbf{p}_{v}, \mathbf{n}\right)$. We follow the principle:

- Any vector in the space can be spanned by the basis $\boldsymbol{p}_{w}, \boldsymbol{p}_{v}$ and \boldsymbol{n}.

Gauss formulas We take the partial derivative of \mathbf{p}_{u} and \mathbf{p}_{v} with respect to u and v :

$$
\left\{\begin{align*}
\mathbf{p}_{u u}:=\frac{\partial}{\partial u} \mathbf{p}_{u} & =\left(\Gamma_{u}\right)^{u}{ }_{u} \mathbf{p}_{u}+\left(\Gamma_{u}\right)^{v}{ }_{u} \mathbf{p}_{v}+\left(\Gamma_{u}\right)^{\mathbf{n}}{ }_{u} \mathbf{n} \tag{120a}\\
& =\left(\Gamma_{u}\right)^{u}{ }_{u} \mathbf{p}_{u}+\left(\Gamma_{u}\right)^{v}{ }_{u} \mathbf{p}_{v}+(\underbrace{}_{\mathbf{p}_{u u} \cdot \mathbf{n}}) \mathbf{n}, \\
\mathbf{p}_{u v}:=\frac{\partial}{\partial v} \mathbf{p}_{u} & =\left(\Gamma_{u}\right)^{u}{ }_{v} \mathbf{p}_{u}+\left(\Gamma_{u}\right)^{v}{ }_{v} \mathbf{p}_{v}+\left(\Gamma_{u}\right)^{\mathbf{n}}{ }_{v} \mathbf{n} \\
& =\left(\Gamma_{u}\right)^{u}{ }_{v} \mathbf{p}_{u}+\left(\Gamma_{u}\right)^{v}{ }_{v} \mathbf{p}_{v}+(\underbrace{\mathbf{p}_{u v} \cdot \mathbf{n}}_{M}) \mathbf{n}, \\
\mathbf{p}_{v u}:=\frac{\partial}{\partial u} \mathbf{p}_{v} & =\left(\Gamma_{v}\right)^{u}{ }_{u} \mathbf{p}_{u}+\left(\Gamma_{v}\right)^{v}{ }_{u} \mathbf{p}_{v}+\left(\Gamma_{v}\right)^{\mathbf{n}} \mathbf{u} \mathbf{n} \\
& =\left(\Gamma_{v}\right)^{u}{ }_{u} \mathbf{p}_{u}+\left(\Gamma_{v}\right)^{v}{ }_{u} \mathbf{p}_{v}+(\underbrace{\left(\mathbf{p}_{v u} \cdot \mathbf{n}\right.}_{M}) \mathbf{n}, \\
\mathbf{p}_{v v}:=\frac{\partial}{\partial v} \mathbf{p}_{v} & =\left(\Gamma_{v}\right)^{u}{ }_{v} \mathbf{p}_{u}+\left(\Gamma_{v}\right)^{v}{ }_{v} \mathbf{p}_{v}+\left(\Gamma_{v}\right)^{\mathbf{n}}{ }_{v} \mathbf{n} \\
& =\left(\Gamma_{v}\right)^{u}{ }_{v} \mathbf{p}_{u}+\left(\Gamma_{v}\right)^{v}{ }_{v} \mathbf{p}_{v}+(\underbrace{\left(\mathbf{p}_{v v} \cdot \mathbf{n}\right.}_{N}) \mathbf{n} .
\end{align*}\right.
$$

We call these set of equations the Gauss formulas. We identify the coefficients

$$
\begin{equation*}
\left(\Gamma_{a}\right)^{c}{ }_{b} \equiv \Gamma^{c}{ }_{a b}, \tag{121}
\end{equation*}
$$

e.g., $\left(\Gamma_{\mathbf{n}}\right)^{u}{ }_{v}=\Gamma^{1}{ }_{n 2}$, then Gauss formulas (120) can be written as

$$
\begin{equation*}
\mathbf{p}_{i j}=\Gamma^{k}{ }_{i j} \mathbf{p}_{k}+\Gamma^{\mathbf{n}}{ }_{i j} \mathbf{n}=\Gamma^{k}{ }_{i j} \mathbf{p}_{k}+b_{i j} \mathbf{n} \quad(i, j, k=1,2), \tag{122}
\end{equation*}
$$

where the coefficients are obtained by

$$
\begin{equation*}
\Gamma_{k i j}=\Gamma^{l}{ }_{i j} g_{l k}=\underbrace{\Gamma_{i j}^{l} \mathbf{p}_{l}}_{\mathbf{p}_{i j}-b_{i j} \mathbf{n}} \cdot \mathbf{p}_{k}=\mathbf{p}_{i j} \cdot \mathbf{p}_{k} \tag{123}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i j}=\Gamma_{i j}^{\mathbf{n}_{i j}}=\mathbf{n} \cdot \mathbf{p}_{i j} . \tag{124}
\end{equation*}
$$

We note that $\Gamma_{k i j}$ and $b_{i j}$ are symmetric in i, j.

Remark. The vectors $d \mathbf{p}$ and $d \mathbf{p}_{i}$ in terms of the differential form are given by

$$
\begin{equation*}
d \mathbf{p}=\left(d u^{i} \partial_{i}\right) \mathbf{p}=d u^{i} \mathbf{p}_{i} \tag{125}
\end{equation*}
$$

and

$$
\begin{equation*}
d \mathbf{p}_{i}=d\left(\partial_{i} \mathbf{p}\right)=d u^{j}\left(\partial_{j} \partial_{i} \mathbf{p}\right)=d u^{j}\left(\Gamma^{k}{ }_{i j} \mathbf{p}_{k}+b_{i j} \mathbf{n}\right):=\Gamma^{k}{ }_{i} \mathbf{p}_{k}+b_{i} \mathbf{n}=\Gamma^{k}{ }_{i} \mathbf{p}_{k}+\Gamma^{n}{ }_{i} \mathbf{n} \tag{126}
\end{equation*}
$$

respectively, where $\Gamma^{k}{ }_{i}:=\Gamma^{k}{ }_{i j} d u^{j}$ is called connection form and $b_{i}:=b_{i j} d u^{j}=\Gamma^{\mathbf{n}}{ }_{i j} d u^{j}=\Gamma^{\mathbf{n}}{ }_{i}$.

Weingarten formulas Due to $\mathbf{n} \cdot \mathbf{n}=1$, we have

$$
\left\{\begin{array}{rll}
\partial_{u}: \mathbf{n}_{u} \cdot \mathbf{n}=0 & \Longrightarrow & \mathbf{n}_{u} \perp \mathbf{n}, \tag{127a}\\
\partial_{v}: \mathbf{n}_{v} \cdot \mathbf{n}=0 & \Longrightarrow & \mathbf{n}_{v} \perp \mathbf{n} .
\end{array}\right.
$$

Therefore, \mathbf{n}_{u} and \mathbf{n}_{v} do not contain the component of \mathbf{n}. We can assume that

$$
\left\{\begin{array}{l}
\mathbf{n}_{u}=A \mathbf{p}_{u}+B \mathbf{p}_{v}=\left(\Gamma_{\mathbf{n}}\right)_{u}^{u} \mathbf{p}_{u}+\left(\Gamma_{\mathbf{n}}\right)_{u}^{v} \mathbf{p}_{v}, \tag{128a}\\
\mathbf{n}_{v}=C \mathbf{p}_{u}+D \mathbf{p}_{v}=\left(\Gamma_{\mathbf{n}}\right)_{v}^{u} \mathbf{p}_{u}+\left(\Gamma_{\mathbf{n}}^{v}{ }_{v}^{v} \mathbf{p}_{v},\right.
\end{array}\right.
$$

which is called the Weingarten formulas. We calculate the inner product of $\mathbf{n}_{u} \cdot \mathbf{p}_{u}$ and $\mathbf{n}_{u} \cdot \mathbf{p}_{v}$:

$$
\left\{\begin{array}{l}
\mathbf{n}_{u} \cdot \mathbf{p}_{u}=-L=E A+F B \tag{129}\\
\mathbf{n}_{u} \cdot \mathbf{p}_{v}=-M=F A+G B
\end{array} \Longrightarrow A=\frac{F M-G L}{E G-F^{2}} \text { and } B=\frac{F L-E M}{E G-F^{2}} .\right.
$$

Similarly, we have

$$
\begin{equation*}
C=\frac{F N-G M}{E G-F^{2}} \quad \text { and } \quad D=\frac{F M-E N}{E G-F^{2}} . \tag{130}
\end{equation*}
$$

The Weingarten formulas (128) can be written by

$$
\begin{equation*}
\mathbf{n}_{j}=\Gamma^{k}{ }_{\mathbf{n} j} \mathbf{p}_{k}, \tag{131}
\end{equation*}
$$

where the coefficients can be calculated by

$$
\begin{equation*}
-b_{i j}=\mathbf{p}_{i} \cdot \mathbf{n}_{j}=\mathbf{p}_{i} \cdot\left(\Gamma_{\mathbf{n} j}^{l} \mathbf{p}_{l}\right)=g_{i l} \Gamma_{\mathbf{n} j}^{l}=\Gamma_{i \mathbf{n} j} \quad \Longrightarrow \quad \Gamma_{\mathbf{n} j}^{k}=g^{k i} \Gamma_{i \mathbf{n} j}=-g^{k i} b_{i j}:=-b_{j}^{k} . \tag{132}
\end{equation*}
$$

As a result, we obtain

$$
\begin{equation*}
\mathbf{n}_{j}=-b^{k}{ }_{j} \mathbf{p}_{k} \tag{133}
\end{equation*}
$$

Remark. The Weingarten formula written in the differential form is given by

$$
\begin{equation*}
d \mathbf{n}=\left(-b^{k}{ }_{j} d u^{j}\right) \mathbf{p}_{k}=-b^{k} \mathbf{p}_{k}:=\Gamma^{k}{ }_{\mathbf{n}} \mathbf{p}_{k} \tag{134}
\end{equation*}
$$

Acceleration (curvature) vector We have an acceleration (curvature) vector $\mathbf{p}^{\prime \prime}(s)$ parametrized by s, which can be decomposed by tangential and normal parts

$$
\begin{equation*}
\mathbf{p}^{\prime \prime}=\mathbf{p}_{t}^{\prime \prime}+\mathbf{p}_{n}^{\prime \prime}:=\boldsymbol{\kappa}_{g}+\boldsymbol{\kappa}_{n} \tag{135}
\end{equation*}
$$

where the tangential part $\boldsymbol{\kappa}_{g}=\kappa_{g} \mathbf{t}$ and normal part $\boldsymbol{\kappa}_{n}=\kappa_{n} \mathbf{n}$ are called geodesic curvature and normal curvature respectively.

Remark. We can identify $\mathbf{p}^{\prime \prime}:=\boldsymbol{a}$ the acceleration vector, therefore, (135) can be read as $\boldsymbol{a}=$ $\boldsymbol{a}_{\mathrm{T}}+\boldsymbol{a}_{\mathrm{N}}$ with the tangent acceleration vector $\boldsymbol{a}_{\mathrm{T}}:=\mathbf{p}_{t}^{\prime \prime}$ and normal acceleration vector $\boldsymbol{a}_{\mathrm{N}}:=\mathbf{p}_{n}^{\prime \prime}$.

According to (11), we have $\mathbf{p}^{\prime \prime} \cdot \mathbf{p}^{\prime}=0$. We would like to discuss the geodesic curvature, we take the inner product of $\mathbf{p}_{t}^{\prime \prime}$ with \mathbf{n} and \mathbf{p}^{\prime} respectively:

$$
\left\{\begin{align*}
\mathbf{p}_{t}^{\prime \prime} \cdot \mathbf{n} & :=0, \tag{136}\\
\mathbf{p}_{t}^{\prime \prime} \cdot \mathbf{p}^{\prime} & :=\left(\mathbf{p}_{t}^{\prime \prime}+\mathbf{p}_{n}^{\prime \prime}\right) \cdot \mathbf{p}^{\prime}=\mathbf{p}^{\prime \prime} \cdot \mathbf{p}^{\prime}=0, \quad \Longrightarrow \quad \mathbf{p}_{t}^{\prime \prime} \propto \mathbf{t}:=\mathbf{n} \wedge \mathbf{p}^{\prime},
\end{align*}\right.
$$

then we can have $\mathbf{p}_{t}^{\prime \prime}=\kappa_{g} \mathbf{t}=\kappa_{g}\left(\mathbf{n} \wedge \mathbf{p}^{\prime}\right)$.
Normal curvature of a curve We would like to discuss normal curvature first, and define $\boldsymbol{\kappa}_{n}=$ $\kappa_{n} \mathbf{n}$, so

$$
\begin{equation*}
\kappa_{n}=\boldsymbol{\kappa}_{n} \cdot \mathbf{n}=\left(\mathbf{p}^{\prime \prime}-\boldsymbol{\kappa}_{g}\right) \cdot \mathbf{n}=\mathbf{p}^{\prime \prime} \cdot \mathbf{n}-\underbrace{\boldsymbol{\kappa}_{g} \cdot \mathbf{n}}_{0} . \tag{137}
\end{equation*}
$$

However we also have

$$
\begin{equation*}
\mathbf{p}^{\prime} \cdot \mathbf{n}=0 \quad \Longrightarrow \quad \mathbf{p}^{\prime \prime} \cdot \mathbf{n}+\mathbf{p}^{\prime} \cdot \mathbf{n}^{\prime}=0 \tag{138}
\end{equation*}
$$

Therefore, κ_{n} can be calculated by

$$
\begin{align*}
\kappa_{n} & =-\mathbf{p}^{\prime} \cdot \mathbf{n}^{\prime} \\
& =-\left(\mathbf{p}_{u} u^{\prime}+\mathbf{p}_{v} v^{\prime}\right) \cdot\left(\mathbf{n}_{u} u^{\prime}+\mathbf{n}_{v} v^{\prime}\right) \\
& =L u^{\prime} u^{\prime}+2 M u^{\prime} v^{\prime}+N v^{\prime} v^{\prime} . \tag{139}
\end{align*}
$$

However $\mathbf{p}^{\prime}=d \mathbf{p} / d s$ and $\mathbf{n}^{\prime}=d \mathbf{n} / d s$, which leads to

$$
\begin{equation*}
\kappa_{n}=-\frac{d \mathbf{p}}{d s} \cdot \frac{d \mathbf{n}}{d s}=\frac{-d \mathbf{p} \cdot d \mathbf{n}}{d s^{2}}=\frac{\mathbf{I I}}{\mathbf{I}} . \tag{140}
\end{equation*}
$$

Remark. We have the norm of tangent vector

$$
\begin{equation*}
1=\left|\mathbf{p}^{\prime}\right|=E u^{\prime} u^{\prime}+2 F u^{\prime} v^{\prime}+G v^{\prime} v^{\prime}=\frac{\mathbf{I}}{d s^{2}} . \tag{141}
\end{equation*}
$$

According to (83)

$$
\begin{equation*}
\mathbf{p}^{\prime}=\frac{d \mathbf{p}}{d s}=\frac{d u^{i}}{d s} \partial_{i}=u^{i \prime} \partial_{i}, \tag{142}
\end{equation*}
$$

we have

$$
\begin{align*}
\mathbf{I}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime}\right) & =g_{k l} d u^{k} d u^{l}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime}\right) \\
& =g_{k l} u^{i \prime} u^{j \prime} d u^{k}\left(\partial_{i}\right) d u^{l}\left(\partial_{j}\right) \\
& =g_{k l} u^{i \prime} u^{j} \delta_{i}^{k} \delta_{j}^{l} \\
& =g_{i j} u^{i \prime} u^{j \prime} \tag{143a}\\
& =E u^{\prime} u^{\prime}+2 F u^{\prime} v^{\prime}+G v^{\prime} v^{\prime}=1 . \tag{143b}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\mathbf{I I}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime}\right) & =b_{i j} u^{i \prime} u^{j \prime} \tag{144a}\\
& =L u^{\prime} u^{\prime}+2 M u^{\prime} v^{\prime}+N v^{\prime} v^{\prime}=\kappa_{n} . \tag{144b}
\end{align*}
$$

We finally obtain

$$
\begin{equation*}
\kappa_{n}=\frac{\mathbf{I I}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime}\right)}{\mathbf{I}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime}\right)}=\mathbf{I I}\left(\mathbf{p}^{\prime}, \mathbf{p}^{\prime}\right) . \tag{145}
\end{equation*}
$$

We assume that κ_{n} has value of λ, which gives the relation

$$
\begin{equation*}
\mathbf{I I}=\lambda \mathbf{I} . \tag{146}
\end{equation*}
$$

One can divide (146) by $d s^{2}$ and then obtain

$$
\begin{equation*}
\frac{\mathbf{I I}}{d s^{2}}=\lambda \frac{\mathbf{I}}{d s^{2}} \quad \Longrightarrow \quad L u^{\prime} u^{\prime}+2 M u^{\prime} v^{\prime}+N v^{\prime} v^{\prime}=\lambda\left(E u^{\prime} u^{\prime}+2 F u^{\prime} v^{\prime}+G v^{\prime} v^{\prime}\right) \tag{147}
\end{equation*}
$$

where λ can be recognized as the Lagrangian multiplier with constraint $E u^{\prime} u^{\prime}+2 F u^{\prime} v^{\prime}+G v^{\prime} v^{\prime}=1$. By looking for the extrema λ of $\kappa_{n}=\mathbf{I I} / d s^{2}$, we take the partial derivative of (147) with respect to $u^{i \prime}$, which leads to the equation of matrix form

$$
\left(\begin{array}{cc}
L & M \tag{148}\\
M & N
\end{array}\right)\binom{u^{\prime}}{v^{\prime}}=\lambda\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)\binom{u^{\prime}}{v^{\prime}} \quad \Longrightarrow \quad\left(\begin{array}{cc}
L-\lambda E & M-\lambda F \\
M-\lambda F & N-\lambda G
\end{array}\right)\binom{u^{\prime}}{v^{\prime}}=0
$$

which means

$$
\begin{equation*}
\left(b_{i j}-\lambda g_{i j}\right) u^{j \prime}=0 . \tag{149}
\end{equation*}
$$

We have to look for the non-trivial solutions, i.e.,

$$
\begin{align*}
& \operatorname{det}\left(b_{i j}-\lambda g_{i j}\right)=0, \\
\Longrightarrow \quad & \left(E G-F^{2}\right) \lambda^{2}-(E N+G L-2 F M) \lambda+L N-M^{2}=0, \\
\Longrightarrow \quad & \boldsymbol{g} \lambda^{2}-(E N+G L-2 F M) \lambda+\boldsymbol{b}=0, \tag{150}
\end{align*}
$$

where we define

$$
\left\{\begin{array}{l}
\boldsymbol{g}:=\operatorname{det}\left(g_{i j}\right)=E G-F^{2}, \tag{151a}\\
\boldsymbol{b}:=\operatorname{det}\left(b_{i j}\right)=L N-M^{2}
\end{array}\right.
$$

As a result, we have the sum and product of two solutions λ_{1} and λ_{2}

$$
\begin{equation*}
\lambda_{1}+\lambda_{2}=\frac{E N+G L-2 F M}{\boldsymbol{g}} \quad \text { and } \quad \lambda_{1} \lambda_{2}=\frac{\boldsymbol{b}}{\boldsymbol{g}} . \tag{152}
\end{equation*}
$$

Gauss curvature We define the Gauss curvature (or called total curvature) as product of two curvatures:

$$
\begin{equation*}
K:=\lambda_{1} \lambda_{2}=\frac{\boldsymbol{b}}{\boldsymbol{g}} . \tag{153}
\end{equation*}
$$

Mean curvature The mean curvature is defined by the mean value of sum of two curvatures:

$$
\begin{equation*}
H:=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)=\frac{E N+G L-2 F M}{2 \boldsymbol{g}} . \tag{154}
\end{equation*}
$$

Remark. The value $\lambda_{\alpha}(\alpha=1,2)$ is called the principal curvature of κ_{n}. By substituting λ_{α} into the equation (149), the corresponding solution of vector $\mathbf{p}_{(\alpha)}^{\prime}=u_{(\alpha)}^{j} \mathbf{p}_{j}$ or $d \mathbf{p}_{(\alpha)}=d u_{(\alpha)}^{j} \mathbf{p}_{j}$ is called the principal direction.

Example (Cylindrical surface in \mathbb{E}^{3}). A surface parallel with z-axis can be described by

$$
\begin{equation*}
\mathbf{p}=(x, y, z)=(x(u), y(u), v) \quad \Longrightarrow \quad d \mathbf{p}=(d x, d y, d z)=\left(x^{\prime} d u, y^{\prime} d u, d v\right) \tag{155}
\end{equation*}
$$

A cylindrical surface need to have a constraint with

$$
\begin{equation*}
\left(\frac{d x}{d u}\right)^{2}+\left(\frac{d y}{d u}\right)^{2}=x^{\prime 2}+y^{\prime 2}=1 \tag{156}
\end{equation*}
$$

Figure 7: A cylinder.
A cylinder is parametrized by

$$
\begin{equation*}
\mathbf{p}(u, v)=(x(u), y(u), v) \quad \Longrightarrow \quad d \mathbf{p}=\mathbf{p}_{u} d u+\mathbf{p}_{v} d v=\left(x^{\prime} d u, y^{\prime} d u, d v\right) \tag{157}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\mathbf{p}_{u}=\left(x^{\prime} d u, y^{\prime} d u, 0\right), \tag{158}\\
\mathbf{p}_{v}=(0,0,1)
\end{array} \quad \Longrightarrow \quad \mathbf{p}_{u} \wedge \mathbf{p}_{v}=\left(y^{\prime},-x^{\prime}, 0\right)\right.
$$

and the normal vector is

$$
\begin{equation*}
\mathbf{n}=\frac{\mathbf{p}_{u} \wedge \mathbf{p}_{v}}{\left|\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right|}=\frac{1}{y^{\prime 2}+x^{\prime 2}}\left(y^{\prime},-x^{\prime}, 0\right)=\left(y^{\prime},-x^{\prime}, 0\right) \tag{159}
\end{equation*}
$$

and

$$
\begin{equation*}
d \mathbf{n}=\mathbf{n}_{u} d u+\mathbf{n}_{v} d v=\left(y^{\prime \prime} d u,-x^{\prime \prime} d u, 0\right) \tag{160}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\mathbf{n}_{u}=\left(y^{\prime \prime},-x^{\prime \prime}, 0\right) \tag{161}\\
\mathbf{n}_{v}=(0,0,0)
\end{array}\right.
$$

Then we have first fundamental form

$$
\begin{equation*}
\mathbf{I}=d \mathbf{p} \cdot d \mathbf{p}=\left(x^{\prime 2}+y^{\prime 2}\right) d u^{2}+d v^{2}=d u^{2}+d v^{2} \tag{162}
\end{equation*}
$$

where

$$
\begin{equation*}
E=G=1, \quad F=0 \tag{163}
\end{equation*}
$$

The second fundamental form can be obtained by

$$
\begin{align*}
\mathbf{I I} & =-d \mathbf{p} \cdot d \mathbf{n} \\
& =-(\mathbf{p}_{u} \cdot \mathbf{n}_{u} d u d u+\underbrace{\mathbf{p}_{u} \cdot \mathbf{n}_{v}}_{0} d u d v+\underbrace{\mathbf{p}_{v} \cdot \mathbf{n}_{u}}_{0} d u d v+\underbrace{\mathbf{p}_{v} \cdot \mathbf{n}_{v}}_{0} d v d v) \\
& =-\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right) d u^{2} \\
& =\left(y^{\prime} x^{\prime \prime}-x^{\prime} y^{\prime \prime}\right) d u^{2} \tag{164}
\end{align*}
$$

where

$$
\begin{equation*}
L=y^{\prime} x^{\prime \prime}-x^{\prime} y^{\prime \prime}, \quad M=N=0 \tag{165}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\boldsymbol{g}=1, \quad \boldsymbol{b}=0, \quad E N+G L-2 F M=y^{\prime} x^{\prime \prime}-x^{\prime} y^{\prime \prime} \tag{166}
\end{equation*}
$$

As a result, we obtain

$$
\begin{array}{ll}
\text { Gauss curvature: } & K=\lambda_{1} \lambda_{2}=0 \\
\text { mean curvature: } & H=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)=\frac{1}{2}\left(y^{\prime} x^{\prime \prime}-x^{\prime} y^{\prime \prime}\right) . \tag{168}
\end{array}
$$

We can solve the above equations to obtain

$$
\begin{equation*}
\lambda_{1}=0, \quad \text { and } \quad \lambda_{2}=y^{\prime} x^{\prime \prime}-x^{\prime} y^{\prime \prime} \tag{169}
\end{equation*}
$$

Geodesic equations The tangent vector parametrized by s is

$$
\begin{equation*}
\mathbf{p}^{\prime}(s)=\mathbf{p}_{i} u^{i \prime} \tag{170}
\end{equation*}
$$

it leads to the acceleration vector is given by

$$
\begin{align*}
\mathbf{p}^{\prime \prime} & =\mathbf{p}_{i}^{\prime} u^{i \prime}+\mathbf{p}_{i} u^{i \prime \prime} \\
& =\left(\Gamma^{k}{ }_{i j} \mathbf{p}_{k}+b_{i j} \mathbf{n}\right) u^{i \prime} u^{j \prime}+\mathbf{p}_{i} u^{i \prime \prime} \\
& =\left(u^{k \prime \prime}+\Gamma^{k}{ }_{i j} u^{i \prime} u^{j \prime}\right) \mathbf{p}_{k}+b_{i j} u^{i \prime} u^{j \prime} \mathbf{n} \tag{171}\\
& =\mathbf{p}_{t}^{\prime \prime}+\mathbf{p}_{n}^{\prime \prime} \tag{172}\\
& =\boldsymbol{\kappa}_{g}+\boldsymbol{\kappa}_{n}, \tag{173}
\end{align*}
$$

where we have used $\mathbf{p}_{i}^{\prime}=\mathbf{p}_{i j}\left(d u^{j} / d s\right)=\left(\Gamma^{k}{ }_{i j} \mathbf{p}_{k}+b_{i j} \mathbf{n}\right) u^{j}$. Now we call the curve $\mathbf{p}(s)$ geodesic if $\mathbf{p}^{\prime \prime}=\mathbf{p}_{n}^{\prime \prime}=\boldsymbol{\kappa}_{n}$, i.e., the tangential part is vanished

$$
\begin{equation*}
\boldsymbol{\kappa}_{g}=\mathbf{p}_{t}^{\prime \prime}=\left(u^{k \prime \prime}+\Gamma^{k}{ }_{i j} u^{i \prime} u^{j \prime}\right) \mathbf{p}_{k}=0, \tag{174}
\end{equation*}
$$

which means that

$$
\mathbf{p} \text { only has the normal curvature } \boldsymbol{\kappa}_{n} \text {. }
$$

Because $\mathbf{p}_{k} \mathrm{~s}$ are linear independent, we obtain

$$
\begin{equation*}
u^{k \prime \prime}+\Gamma^{k}{ }_{i j} u^{i \prime} u^{j \prime}=0, \tag{175}
\end{equation*}
$$

which is called geodesic equations.
Supplement (Connection and geodesic). We have differential of \mathbf{p}^{\prime} given by

$$
\begin{align*}
d \mathbf{p}^{\prime} & =d \mathbf{p}_{i} u^{i \prime}+\mathbf{p}_{i} d u^{i} \\
& =\left(\Gamma^{k}{ }_{i} \mathbf{p}_{k}+b_{i} \mathbf{n}\right) u^{i \prime}+\mathbf{p}_{i} d u^{i \prime} \\
& =\left(d u^{k \prime}+\Gamma^{k}{ }_{i} u^{i \prime}\right) \mathbf{p}_{k}+b_{i} u^{i \prime} \mathbf{n}, \tag{176}
\end{align*}
$$

i.e., the symbol d is a total or absolute differential with respect to frame $\left(\mathbf{p} ; \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{n}\right)$ on \mathbb{E}^{3}. The total or absolute differentiation means that we have to differentiate not only the component $u^{i \prime}$ but also the basis \mathbf{p}_{i} of a vector \mathbf{p}^{\prime}. We assume that \mathbf{p}^{\prime} can be written as

$$
\begin{equation*}
\mathbf{p}^{\prime}=u^{i \prime} \partial_{i}:=V^{i} \partial_{i}=\boldsymbol{V} . \tag{177}
\end{equation*}
$$

Then (176) can be written as

$$
\begin{equation*}
d \boldsymbol{V}=\left(d V^{k}+\Gamma_{i}^{k} V^{i}\right) \partial_{k}+b_{i} V^{i} \mathbf{n} . \tag{178}
\end{equation*}
$$

and the geodesic equation becomes as

$$
\begin{equation*}
\left(d V^{k}+\Gamma^{k}{ }_{i} V^{i}\right) \partial_{k}=0 \tag{179}
\end{equation*}
$$

We define the connection $D=d u^{i} \otimes D_{i}$ on \mathcal{M}, which act on the function V^{i} and basis ∂_{i} are

$$
\left\{\begin{align*}
D V^{i} & =d V^{i}=d u^{j} \otimes \partial_{j} V^{i} \tag{180a}\\
D \partial_{i} & =\Gamma^{k}{ }_{i} \otimes \partial_{k}=d u^{j} \otimes \Gamma^{k}{ }_{i j} \partial_{k}
\end{align*}\right.
$$

respectively. We note that D act on a function as a differential d on a function. The connection act on a vector is given by

$$
\begin{equation*}
D \boldsymbol{V}=\left(D V^{i}\right) \otimes \partial_{i}+V^{i}\left(D \partial_{i}\right)=d V^{i} \otimes \partial_{i}+V^{i} \Gamma_{i}^{k} \otimes \partial_{k}=(\underbrace{d V^{k}+\Gamma_{i}^{k} V^{i}}_{(D \boldsymbol{V})^{k}}) \otimes \partial_{k} \tag{181}
\end{equation*}
$$

The resulting geodesic equation (179) can be read as

$$
\begin{equation*}
D \boldsymbol{V}=0 . \tag{182}
\end{equation*}
$$

Therefore, (178) can also written as

$$
\begin{equation*}
d \boldsymbol{V}=d \boldsymbol{V}^{\top}+d \boldsymbol{V}^{\perp}=D \boldsymbol{V}+b_{i} V^{i} \mathbf{n} \tag{183}
\end{equation*}
$$

where T is the orthogonal projection onto the space spanned by $\left\{\partial_{k}\right\}$ and \perp means the normal component. If there is no normal space \mathcal{M}^{\perp} of \mathcal{M}, the differential

$$
\begin{equation*}
d \boldsymbol{V}=D \boldsymbol{V} \tag{184}
\end{equation*}
$$

would be the total or absolute differential of a vector \boldsymbol{V} on surface \mathcal{M}. We can multiply $1 / d u^{j}$ to the $D \boldsymbol{V}$:

$$
\begin{align*}
\frac{1}{d u^{j}} D \boldsymbol{V} & =\frac{1}{d u^{j}}\left(d V^{k}+\Gamma^{k}{ }_{i} V^{i}\right) \partial_{k} \\
& =\frac{1}{d u^{j}}\left(d V^{k}+\Gamma^{k}{ }_{i l} d u^{l} V^{i}\right) \partial_{k} \\
& =(\partial_{j} V^{k}+\Gamma^{k}{ }_{i l} \underbrace{\frac{d u^{l}}{d u^{j}}}_{\delta_{j}^{l}} V^{i}) \partial_{k} \\
& =\left(\partial_{j} V^{k}+\Gamma^{k}{ }_{i j} V^{i}\right) \partial_{k} \\
& :=\left(\nabla_{j} V^{k}\right) \partial_{k}, \tag{185}
\end{align*}
$$

where we define the component

$$
\begin{equation*}
(D \boldsymbol{V})_{j}{ }^{k}:=\nabla_{\text {component of } V} V_{\partial_{j}}^{k} V^{k}=\partial_{j} V^{k}+\Gamma^{k}{ }_{i j} V^{i} \tag{186}
\end{equation*}
$$

called the covariant derivative of vector V^{k} in ∂_{j} direction. We note that the covariant derivatives ∇_{j} act on the component of vector V^{k} only.

It can also be recognized as a vector-valued 1-form $D \boldsymbol{V}$ act on a vector ∂_{j}

$$
\begin{equation*}
D \boldsymbol{V}\left(\partial_{j}\right)=\left((D \boldsymbol{V})_{i}^{k} d x^{i} \otimes \partial_{k}\right)\left(\partial_{j}\right)=(D \boldsymbol{V})_{i}{ }^{k} \underbrace{d x^{i}\left(\partial_{j}\right)}_{\delta_{j}^{i}} \otimes \partial_{k}=(D \boldsymbol{V})_{j}^{k} \partial_{k} . \tag{187}
\end{equation*}
$$

Now we will return to the discussion of the tangential part of acceleration (curvature) vector

$$
\begin{equation*}
\boldsymbol{a}_{\mathrm{T}}:=\mathbf{p}_{t}^{\prime \prime}=\left(\frac{d V}{d s}\right)^{\top}:=\frac{D \boldsymbol{V}}{d s}=\frac{1}{d s} D \boldsymbol{V}=\frac{d u^{j}}{d s} \frac{1}{d u^{j}} D \boldsymbol{V} \stackrel{(185)}{=} V^{j}\left(\nabla_{j} V^{k}\right) \partial_{k}:=a_{\mathrm{T}}^{k} \partial_{k}, \tag{188}
\end{equation*}
$$

which is the orthogonal projection of the acceleration vector $\mathbf{p}^{\prime \prime}$ onto the space spanned by $\left\{\partial_{k}\right\}$. As a result, we have tangential acceleration with component

$$
\begin{equation*}
a_{\mathrm{T}}^{k}:=V^{j} \nabla_{j} V^{k}, \tag{189}
\end{equation*}
$$

where

$$
\begin{equation*}
V^{j} \nabla_{j}=V^{j} \nabla_{\partial_{j}}=\nabla_{V^{j} \partial_{j}}=\nabla_{V} . \tag{190}
\end{equation*}
$$

So we can also write a_{T}^{k} as

$$
\begin{equation*}
a_{\mathrm{T}}^{k}=\nabla_{V} V^{k} \tag{191}
\end{equation*}
$$

which is called the covariant derivative of V^{k} along the direction of \boldsymbol{V}. Then, we call

$$
\begin{equation*}
a_{\mathrm{T}}^{k}=\nabla_{V} V^{k}=0 \quad \text { or } \quad D \boldsymbol{V}=0 \tag{192}
\end{equation*}
$$

the parallel transport of tangent vector \boldsymbol{V}, which is equivalent to the geodesic equation.

Remark. We would like to remind you the notation of the covariant dereivative in mathematics and physics. Consider a vector V, the covariant dereivative (connection) $\left(D\right.$ or $\left.D_{j}\right)$ of a full vector $V=V^{i} \partial_{i}$ is

$$
\begin{equation*}
D V=d u^{j} \otimes D_{j}\left(V^{i} \partial_{i}\right)=d u^{j} \otimes(\underbrace{\partial_{j} V^{i}}_{V_{: j}^{i}}+V^{k} \Gamma^{i}{ }_{k j}) \partial_{i}:=V_{; j}^{i} d u^{j} \otimes \partial_{i}=(D V)_{j}{ }^{i} d u^{j} \otimes \partial_{i} . \tag{193}
\end{equation*}
$$

We note that here $D_{j} V^{i}=\partial_{j} V^{i}=V_{, j}^{i}$ and $D_{j} \partial_{i}=\partial_{k} \Gamma^{k}{ }_{i j}$ as shown in (180). In physics, we always consider a vector represented by its component V^{i}, the covariant dereivative $\left(\nabla_{j}\right)$ of a vector V^{i} should be

$$
\begin{equation*}
\nabla_{j} V^{i}=(D V)_{j}{ }^{i}=V_{, j}^{i}+V^{k} \Gamma^{i}{ }_{k j} \equiv V_{; j}^{i} . \tag{194}
\end{equation*}
$$

Christoffel symbols According to (123), we can calculate the coefficients $\Gamma_{k i j}$. Now we would like to derive the coefficients in terms of $g_{i j}$, the components of first fundamental form \mathbf{I}. We take the partial derivative of $g_{i j}$ with respect to u^{k} and then interchange the indices of the equations. Therefore, we obtain

$$
\left\{\begin{align*}
\frac{\partial}{\partial u^{k}} g_{i j} & =\mathbf{p}_{i k} \cdot \mathbf{p}_{j}+\mathbf{p}_{i} \cdot \mathbf{p}_{j k}=\Gamma_{j i k}+\Gamma_{i j k} \tag{195a}\\
\frac{\partial}{\partial u^{i}} g_{j k} & =\Gamma_{k j i}+\Gamma_{j k i} \\
\frac{\partial}{\partial u^{j}} g_{k i} & =\Gamma_{i k j}+\Gamma_{k i j}
\end{align*}\right.
$$

Remark. Equations of (195) gives the metric compatibility, which can be written as the covarinat deriavative of $g_{i j}$

$$
\begin{equation*}
\nabla_{k} g_{i j}=\partial_{k} g_{i j}-\Gamma^{l}{ }_{i k} g_{l j}-\Gamma^{l}{ }_{j k} g_{l i}=0 . \tag{196}
\end{equation*}
$$

We can define the non-metricity

$$
\begin{equation*}
Q_{k i j}:=-\nabla_{k} g_{i j} \tag{197}
\end{equation*}
$$

and (196) would be equivalent to the vanished non-metricity $Q_{k i j}=0$.

According to (344), which will be shown later that $\mathbf{p}_{i} \neq \partial_{i} \mathbf{p}$ in general, we have general case that

$$
\begin{equation*}
0 \neq \mathbf{p}_{i j}-\mathbf{p}_{j i}=\left(D_{j} \mathbf{p}_{i}+b_{i j} \mathbf{n}\right)-\left(D_{i} \mathbf{p}_{j}+b_{j i} \mathbf{n}\right)=\left(\Gamma_{i j}^{k}-\Gamma_{j i}^{k}\right) \mathbf{p}_{k}+\left(b_{i j}-b_{j i}\right) \mathbf{n} . \tag{198}
\end{equation*}
$$

However, in (120), we have $\mathbf{p}_{i j}=\partial_{j} \mathbf{p}_{i}=\partial_{j} \partial_{i} \mathbf{p}$ due to the globally fixed frame in \mathbb{E}^{3}, which will be explained in the Sec. 4 by the reduction condition (345). Consequently, if we have

$$
\mathbf{p}_{i j}-\mathbf{p}_{j i}=0 . \quad \Longrightarrow \quad\left\{\begin{array}{c}
\Gamma_{i j}^{k}=\Gamma_{j i}^{k} \tag{199a}\\
b_{i j}=b_{j i}
\end{array}\right.
$$

which give the symmetric condition (torsion-free) for $\Gamma^{k}{ }_{i j}$ and $b_{i j}$.
By computing (195c)+(195b)-(195a), we obtain coefficients

$$
\begin{equation*}
\Gamma_{k i j}=\frac{1}{2}\left(\frac{\partial}{\partial u^{j}} g_{k i}+\frac{\partial}{\partial u^{i}} g_{j k}-\frac{\partial}{\partial u^{k}} g_{i j}\right) \tag{200}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma^{k}{ }_{i j}=g^{k l} \Gamma_{l i j}=\frac{1}{2} g^{k l}\left(\frac{\partial}{\partial u^{j}} g_{l i}+\frac{\partial}{\partial u^{i}} g_{j l}-\frac{\partial}{\partial u^{l}} g_{i j}\right) . \tag{201}
\end{equation*}
$$

Remark. According to (180b), the $\Gamma^{k}{ }_{i j}$ is also called the connection coefficients, or simply the connection. Due to metric compatibility (196) and torsion-free (304a), the connection (200) or (201) is a function of the metric tensor $g_{i j}$, we also call this kind of connection the Levi-Civita connection or Riemannian connection. The Levi-Civita connection can also be denoted as

$$
\left\{\begin{array}{l}
\Gamma_{k i j}(g) \equiv[i j, k], \tag{202a}\\
\Gamma_{i j}^{k}(g) \equiv\left\{\begin{array}{l}
k \\
i j
\end{array}\right\},
\end{array}\right.
$$

which are called the Christoffel symbol of first and second kind respectively, in order to distinguish the general connections.

Supplement (Torsion tensor). For general metric compatible connection, we always do not have the symmetric property, i.e., $\Gamma^{k}{ }_{i j} \neq \Gamma^{k}{ }_{j i}$. The connection would contain the symmetric and antisymmetric parts, which is shown as

$$
\begin{align*}
\Gamma^{k}{ }_{i j} & =\frac{1}{2}(\underbrace{\Gamma^{k}{ }_{i j}+\Gamma^{k}}_{\text {symmetric in } i, j})+\frac{1}{2}(\underbrace{\Gamma^{k}{ }_{i j}-\Gamma^{k}{ }_{j i}}_{\text {anti-symmetric in } i, j}) \\
& =\Gamma^{k}{ }_{(i j)}+\Gamma^{k}{ }_{[i j]} . \tag{203}
\end{align*}
$$

We define the torsion tensor

$$
\begin{equation*}
T_{j i}^{k}:=\Gamma^{k}{ }_{i j}-\Gamma^{k}{ }_{j i}=2 \Gamma^{k}{ }_{[i j]} \tag{204}
\end{equation*}
$$

as the anti-symmetric part of the connection. We have to note that $\Gamma^{k}{ }_{(i j)} \neq\left\{\begin{array}{l}k \\ i j\end{array}\right\}$. The general connection can be decomposed as

$$
\Gamma^{k}{ }_{i j}=\left\{\begin{array}{l}
k \tag{205}\\
i j
\end{array}\right\}+K_{i j}^{k},
$$

and it leads to the relation

$$
\begin{equation*}
T_{j i}^{k}=K^{k}{ }_{i j}-K^{k}{ }_{j i}, \tag{206}
\end{equation*}
$$

where $K^{k}{ }_{i j}$ is called the contorsion tensor. By permutatiing the indices of (206), it can be show that the contorsion $K^{k}{ }_{i j}$ can be in terms of torsion tensor $T^{k}{ }_{i j}$ as

$$
\begin{equation*}
K^{k}{ }_{i j}:=-\frac{1}{2}\left(T^{k}{ }_{i j}+T^{i}{ }_{j k}-T^{j}{ }_{k i}\right)=-\frac{1}{2}(\underbrace{T^{k}{ }_{i j}}_{\text {anti-symmetric in } i, j}+\overbrace{T^{i}{ }_{j k}+T^{j}{ }_{i k}}^{\text {symmetric in } i, j}) \tag{207}
\end{equation*}
$$

or

$$
\begin{equation*}
K^{k}{ }_{i j}:=-\frac{1}{2}(\underbrace{T^{k}{ }_{i j}}_{\text {anti-symmetric in } i, j} \overbrace{-T_{i}^{k}{ }_{j}-T_{j}^{k}{ }_{i}}^{\text {symmetric in } i, j}) \quad \text { (in pseudo-Riemannian geometry). } \tag{208}
\end{equation*}
$$

So the torsion 2-form can be written as

$$
\begin{equation*}
\mathcal{T}^{k}=\frac{1}{2} T^{k}{ }_{j i} d u^{j} \wedge d u^{i} \stackrel{(203)}{=} \Gamma^{k}{ }_{i j} d u^{j} \wedge d u \stackrel{i}{i} \stackrel{(205)}{=} K^{k}{ }_{i j} d u^{j} \wedge d u^{i}, \tag{209}
\end{equation*}
$$

where we define $K^{k}{ }_{i}:=K^{k}{ }_{i j} d u^{j}$ the contorsion 1-form. Therefore, we have the form equation

$$
\begin{equation*}
\mathcal{T}^{k}=K^{k}{ }_{i} \wedge d u^{i} . \tag{210}
\end{equation*}
$$

Consequently, the symmetric and anti-symmetric parts of the connection are

$$
\left\{\begin{array}{l}
\Gamma_{(i j)}^{k}=\left\{\begin{array}{l}
k \\
i j
\end{array}\right\}+K_{(i j)}^{k}, \tag{211a}\\
\Gamma_{[i j]}^{k}=K_{[i j]}^{k}=-\frac{1}{2} T^{k}{ }_{i j}=+\frac{1}{2} T^{k}{ }_{j i},
\end{array}\right.
$$

respectively, which shows that the symmetric part $\Gamma^{k}{ }_{(i j)}$ contains Levi-Civita connection $\left\{\begin{array}{l}k \\ i j\end{array}\right\}$ and torsion $T^{k}{ }_{i j}$.

Remark. We also note that if we identify

$$
\begin{equation*}
\left(\Gamma_{a}\right)^{c}{ }_{b} \equiv \Gamma^{c}{ }_{b a} \tag{212}
\end{equation*}
$$

and the connection form is defined by $\Gamma^{k}{ }_{j}=\Gamma^{k}{ }_{i j} d u^{i}$, the torsion tensor will be denoted by

$$
\begin{equation*}
T^{k}{ }_{i j}:=\Gamma^{k}{ }_{i j}-\Gamma^{k}{ }_{j i}=2 \Gamma^{k}{ }_{[i j]} . \tag{213}
\end{equation*}
$$

Christoffel symbols in the orthogonal coordinates If we consider the case in the orthogonal coordinates, we have $g_{12}=g_{21}=g^{12}=g^{21}=0$ and

$$
\begin{equation*}
g^{11}=\frac{1}{g_{11}}=\frac{1}{E}, \quad g^{22}=\frac{1}{g_{22}}=\frac{1}{G} . \tag{214}
\end{equation*}
$$

The component of Christoffel symbols becomes

$$
\begin{equation*}
\Gamma_{i j}^{k}=\frac{1}{2 g_{k k}}\left(\partial_{j} g_{k i}+\partial_{i} g_{j k}-\partial_{k} g_{i j}\right) \quad(\text { no sum }), \tag{215}
\end{equation*}
$$

and we have the following properties:

- For $j=k$, we have

$$
\begin{equation*}
\left.\Gamma^{k}{ }_{i k}=\frac{1}{2 g_{k k}}\left(\partial_{k} g_{k i}+\partial_{i} g_{k k}-\partial_{k} g_{i k}\right)=\frac{1}{2 g_{k k}} \partial_{i} g_{k k}=\frac{1}{2} \partial_{i}\left(\ln g_{k k}\right) \quad \text { (no sum }\right) . \tag{216}
\end{equation*}
$$

- For $i=j \neq k$, we have

$$
\begin{equation*}
\Gamma^{k}{ }_{i i}=\frac{1}{2 g_{k k}}\left(\partial_{i} y_{k i}+\partial_{i} y_{i k}-\partial_{k} g_{i i}\right)=-\frac{1}{2 g_{k k}} \partial_{k} g_{i i} \quad \text { (no sum). } \tag{217}
\end{equation*}
$$

- In the general case of dimension >2, if $i \neq j \neq k$, we have

$$
\begin{equation*}
\Gamma^{k}{ }_{i j}=0 \quad \text { (in orthogonal coordinates) } . \tag{218}
\end{equation*}
$$

In dimension $=2$, it is impossible that i, j, k are all distinct, so we have the same consequence $\Gamma^{k}{ }_{i j}=0$.
Therefore, for dimension $=2$, the christoffel symbols in the orthogonal coordinates are given by

$$
\begin{align*}
& \Gamma^{1}{ }_{11}=\frac{E_{u}}{2 E}, \quad \Gamma^{2}{ }_{22}=\frac{G_{v}}{2 G}, \\
& \Gamma^{1}{ }_{12}=\Gamma^{1}{ }_{21}=\frac{E_{v}}{2 E}, \quad \Gamma^{2}{ }_{21}=\Gamma^{2}{ }_{12}=\frac{G_{u}}{2 G}, \\
& \Gamma^{1}{ }_{22}=\frac{-G_{u}}{2 E}, \quad \Gamma^{2}{ }_{11}=\frac{-E_{v}}{2 G} . \tag{219}
\end{align*}
$$

Example (Polar coordinates). Consider the first fundamental form in orthogonal coordinates

$$
\begin{equation*}
d s^{2}=E d u^{2}+2 F d u d v+G d v^{2}=d r^{2}+r^{2} d \theta^{2} \tag{220}
\end{equation*}
$$

where we have $u=r, v=\theta$ and

$$
\left\{\begin{array} { l }
{ E = 1 , } \tag{221}\\
{ F = 0 , } \\
{ G = r ^ { 2 } }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{l}
E_{r}=E_{\theta}=G_{\theta}=0, \\
G_{r}=2 r .
\end{array}\right.\right.
$$

The Christoffel symbols are given by

$$
\begin{equation*}
\Gamma^{2}{ }_{21}=\Gamma^{2}{ }_{12}=\frac{2 r}{2 r^{2}}=\frac{1}{r}, \quad \Gamma^{1}{ }_{22}=\frac{-2 r}{2}=-r . \tag{222}
\end{equation*}
$$

The geodesic equations is given by (175). Therefore, each component of the geodesic equations is obtained by

$$
\left\{\begin{array}{l}
\theta^{\prime \prime}+\Gamma^{2}{ }_{12} r^{\prime} \theta^{\prime}+\Gamma_{21}^{2} \theta^{\prime} r^{\prime}=\theta^{\prime \prime}+\frac{2}{r} r^{\prime} \theta^{\prime}=0 \tag{223a}\\
r^{\prime \prime}+\Gamma^{1}{ }_{22} \theta^{\prime} \theta^{\prime}=r^{\prime \prime}-r \theta^{\prime} \theta^{\prime}=0
\end{array}\right.
$$

Gauss-Codazzi equation Now we have Gauss and Weingarten formulas

$$
\left\{\begin{align*}
\mathbf{p}_{i k} & =\Gamma^{l}{ }_{i k} \mathbf{p}_{l}+b_{i k} \mathbf{n} \tag{224a}\\
\mathbf{n}_{j} & =-b^{l}{ }_{j} \mathbf{p}_{l}
\end{align*}\right.
$$

which correspond to the derivative vectors of tangent and normal vectors respectively. By taking the partial derivative of $\mathbf{p}_{i k}$ with respect to u^{j}, we have

$$
\begin{align*}
\partial_{j} \mathbf{p}_{i k} & =\partial_{j} \Gamma^{l}{ }_{i k} \mathbf{p}_{l}+\Gamma^{l}{ }_{i k} \mathbf{p}_{l j}+\partial_{j} b_{i k} \mathbf{n}+b_{i k} \mathbf{n}_{j} \\
& =\partial_{j} \Gamma^{l}{ }_{i k} \mathbf{p}_{l}+\Gamma^{l}{ }_{i k}\left(\Gamma^{m}{ }_{l j} \mathbf{p}_{m}+b_{l j} \mathbf{n}\right)+\partial_{j} b_{i k} \mathbf{n}+b_{i k}\left(-b^{l}{ }_{j}\right) \mathbf{p}_{l} \\
& =\left(\partial_{j} \Gamma^{l}{ }_{i k}+\Gamma^{m}{ }_{i k} \Gamma^{l}{ }^{\prime}{ }_{j j}-b_{i k} b^{l}{ }_{j}\right) \mathbf{p}_{l}+\left(\Gamma^{l}{ }_{i k} b_{l j}+\partial_{j} b_{i k}\right) \mathbf{n} . \tag{225}
\end{align*}
$$

By interchanging the indices j and k, we obtain

$$
\begin{equation*}
\partial_{k} \mathbf{p}_{i j}=\left(\partial_{k} \Gamma^{l}{ }_{i j}+\Gamma^{m}{ }_{i j} \Gamma^{l}{ }_{m k}-b_{i j} b^{l}{ }_{k}\right) \mathbf{p}_{l}+\left(\Gamma^{l}{ }_{i j} b_{l k}+\partial_{k} b_{i j}\right) \mathbf{n} . \tag{226}
\end{equation*}
$$

As a consequence, (225) $-(226)=0$, which is

$$
\begin{equation*}
\partial_{j} \mathbf{p}_{i k}-\partial_{k} \mathbf{p}_{i j}=\partial_{j} \partial_{k} \mathbf{p}_{i}-\partial_{k} \partial_{j} \mathbf{p}_{i}=0 . \tag{227}
\end{equation*}
$$

We define the Riemann(-Christoffel) curvature tensor or simply the curvature tensor as

$$
\begin{equation*}
R_{i j k}^{l}:=\partial_{j} \Gamma^{l}{ }_{i k}-\partial_{k} \Gamma^{l}{ }_{i j}+\Gamma^{l}{ }_{m j} \Gamma^{m}{ }_{i k}-\Gamma^{l}{ }_{m k} \Gamma^{m}{ }_{i j} . \tag{228}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{l i j k}:=g_{l m} R^{m}{ }_{i j k} \tag{229}
\end{equation*}
$$

is defined. Therefore, according to (227), we obtain a set of equations called Gauss-Codazzi equation, which are given by

$$
\begin{align*}
0 & =\partial_{j} \mathbf{p}_{i k}-\partial_{k} \mathbf{p}_{i j} \\
& =(\underbrace{R_{i j k}^{l}-b_{i k} b_{j}^{l}+b_{i j} b_{k}^{l}}_{0}) \mathbf{p}_{l}+(\underbrace{\Gamma^{l}{ }_{i k} b_{l j}-\Gamma^{l}{ }_{i j} b_{l k}+\partial_{j} b_{i k}-\partial_{k} b_{i j}}_{0}) \mathbf{n} . \tag{230}
\end{align*}
$$

The first one is called Gauss equation

$$
\begin{equation*}
R_{i j k}^{l}=b_{i k} b^{l}{ }_{j}-b_{i j} b^{l}{ }_{k}, \tag{231}
\end{equation*}
$$

and the second one is Codazzi equation

$$
\begin{equation*}
\partial_{j} b_{i k}-\partial_{k} b_{i j}=\Gamma^{l}{ }_{i j} b_{l k}-\Gamma_{i k}^{l}{ }_{i k} b_{l j} . \tag{232}
\end{equation*}
$$

We note that there are some symmetries of curvature tensor:

- Anti-symmetric in the indices j and k

$$
\begin{equation*}
R_{i j k}^{l}=-R_{i k j}^{l} . \tag{233}
\end{equation*}
$$

- Anti-symmetric in l and i (only for Levi-Civita connection)

$$
\begin{equation*}
R_{l i j k}=-R_{i l j k} \tag{234}
\end{equation*}
$$

- Symmetric in the pairs of $l i$ and $j k$ (only for Levi-Civita connection)

$$
\begin{equation*}
R_{l i j k}=+R_{j k l i} \tag{235}
\end{equation*}
$$

We also define the traced curvature tensor called Ricci tensor, which is given by

$$
\begin{equation*}
R_{i k}=R_{i l k}^{l} \tag{236}
\end{equation*}
$$

and the scalar curvature or Ricci scalar

$$
\begin{equation*}
R=g^{i k} R_{i k} . \tag{237}
\end{equation*}
$$

Theorem Egregium of Gauss The indices $i, j, k, l=1,2$, by the symmetries of Riemann curvature tensor, the following components are vanished:

$$
\begin{equation*}
R_{11 j k}=R_{22 j k}=0, \quad R_{l i 11}=R_{l i 22}=0, \tag{238}
\end{equation*}
$$

From the Gauss equation (231), the residual component can be given by

$$
\begin{align*}
R_{1212} & =b_{22} b_{11}-b_{12} b_{12} \\
& =N L-M^{2} \\
& =\operatorname{det}\left(b_{i j}\right)=\boldsymbol{b} . \tag{239}
\end{align*}
$$

Therefore, we can rewrite the Gauss curvature (153) as

$$
\begin{equation*}
K=\frac{\boldsymbol{b}}{\boldsymbol{g}}=\frac{R_{1212}}{\boldsymbol{g}} \tag{240}
\end{equation*}
$$

which is a function of $g_{i j}$ only, i.e., a 2-dimensional surface in \mathbb{E}^{3} is totally determined by it's intrinsic structure. This is the famous intrinsic geometry of Gauss and we call this the theorem Egregium of Gauss. From the Codazzi equation (232), we only need to consider the case of $i=1,2$ and $j=1$ as well as $k=2$. This gives

$$
\left\{\begin{array}{l}
\frac{\partial b_{12}}{\partial u^{1}}-\frac{\partial b_{11}}{\partial u^{2}}=\Gamma^{l}{ }_{11} b_{l 2}-\Gamma^{l}{ }_{12} b_{l 1}, \tag{241a}\\
\frac{\partial b_{22}}{\partial u^{1}}-\frac{\partial b_{21}}{\partial u^{2}}=\Gamma^{21} b_{l 2}-\Gamma^{22} b_{l 1},
\end{array} \quad(l=1,2) .\right.
$$

Remark. In general n-dimensional space \mathcal{M}^{n}, we can always choose a orthonormal frame, so that $\boldsymbol{g}=1$. Then we call $K=R_{i j i j}$ for $i \neq j$ the sectional curvature of the 2-dimensional surface in \mathcal{M}^{n}, where i, j labeled two components on the surface.

Third fundamental (quadratic) form In analogy we have a Gauss map for a surface, the Gauss sphere S^{2}. A normal vector \mathbf{n} will be sent to be a radius vector of S^{2}. Therefore, \mathbf{n} on S^{2} play the same role as \mathbf{p} on the surface \mathcal{M}. As a result, we can calculate the first fundamental for of S^{2} by

$$
\begin{equation*}
\left.\mathbf{I}\right|_{S^{2}}=d \mathbf{n} \cdot d \mathbf{n} . \tag{242}
\end{equation*}
$$

Now we define the third fundamental form of \mathcal{M} to be the first fundamental form of S^{2}

$$
\begin{equation*}
\left.\mathbf{I I I}\right|_{\mathcal{M}}:=\left.\mathbf{I}\right|_{S^{2}}=d \mathbf{n} \cdot d \mathbf{n} . \tag{243}
\end{equation*}
$$

From the first fundamental form, we can calculate the area element on the surface \mathcal{M} and S^{2}, which are denoted by $\left.\Delta A\right|_{\mathcal{M}}$ and $\left.\Delta A\right|_{S^{2}}$ respectively. The results can be obtained by

$$
\left\{\begin{align*}
\Delta \mathbf{p} \approx \mathbf{p}_{u} \Delta u+\mathbf{p}_{v} \Delta v & \Longrightarrow & \left.\Delta A\right|_{\mathcal{M}}=\left|\mathbf{p}_{u} \Delta u \wedge \mathbf{p}_{v} \Delta v\right|=\left|\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right| \Delta u \Delta v \tag{244a}\\
\Delta \mathbf{n} \approx \mathbf{n}_{u} \Delta u+\mathbf{n}_{v} \Delta v & \Longrightarrow & \left.\Delta A\right|_{S^{2}}=\left|\mathbf{n}_{u} \Delta u \wedge \mathbf{n}_{v} \Delta v\right|=\left|\mathbf{n}_{u} \wedge \mathbf{n}_{v}\right| \Delta u \Delta v
\end{align*}\right.
$$

However, the vectors \mathbf{n}_{u} and \mathbf{n}_{v} are given by the Weingarten formulas (128) with (129) and (130). We can express $\mathbf{n}_{u} \wedge \mathbf{n}_{v}$ in terms of \mathbf{p}_{u} and \mathbf{p}_{v} by

$$
\begin{align*}
\mathbf{n}_{u} \wedge \mathbf{n}_{v} & =A D\left(\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right)-B C\left(\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right) \\
& =\frac{F M-G L}{E G-F^{2}} \frac{F M-E N}{E G-F^{2}}\left(\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right)-\frac{F L-E M}{E G-F^{2}} \frac{F N-G M}{E G-F^{2}}\left(\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right) \\
& =\frac{L N-M^{2}}{E G-F^{2}}\left(\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right)=\frac{\boldsymbol{b}}{\boldsymbol{g}}\left(\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right)=K\left(\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right) . \tag{245}
\end{align*}
$$

Consequently, we can measure the absolute value of Gauss curvature by the ratio

$$
\begin{equation*}
\frac{\left.\Delta A\right|_{S^{2}}}{\left.\Delta A\right|_{\mathcal{M}}}=\frac{\left|\mathbf{n}_{u} \wedge \mathbf{n}_{v}\right| \Delta u \Delta v}{\left|\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right| \Delta u \Delta v}=\frac{|K|\left|\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right| \Delta u \Delta v}{\left|\mathbf{p}_{u} \wedge \mathbf{p}_{v}\right| \Delta u \Delta v}=|K| . \tag{246}
\end{equation*}
$$

4 Cartan's moving frame and exterior differentiation methods

We would like to introduce a very useful lemma of Cartan first.
Lemma (Cartan's lemma). Consider a set of linearly independent frame $\left\{\boldsymbol{e}_{i}\right\}$ (or coframe $\left\{\vartheta^{i}\right\}$) with $i=1, \ldots, p(p<n)$ in n-dimensional space \mathcal{M} and $\left\{\boldsymbol{E}_{i}\right\}$ is another set of frame. If $\boldsymbol{e}^{i} \wedge \boldsymbol{E}_{i}=$ $\boldsymbol{e}^{1} \wedge \boldsymbol{E}_{1}+\cdots+\boldsymbol{e}^{p} \wedge \boldsymbol{E}_{p}=0$, then $\boldsymbol{E}_{i}=c_{i j} \boldsymbol{e}^{j}$ and $c_{i j}=c_{j i}$.
Proof. We set the linearly independent frame in \mathcal{M} by extending to n-tuple from \mathbf{e}_{i} given by

$$
\begin{equation*}
\underbrace{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{p}}_{p}, \underbrace{\mathbf{e}_{p+1}, \ldots, \mathbf{e}_{n}}_{n-p} \tag{247}
\end{equation*}
$$

with index α labeled components $p+1, p+2, \ldots, n$. We assume that \boldsymbol{E}_{i} is expanded by frame in \mathcal{M} as

$$
\begin{equation*}
\boldsymbol{E}_{i}=c_{i j} \mathbf{e}^{j}+c_{i \alpha} \mathbf{e}^{\alpha} . \tag{248}
\end{equation*}
$$

According to $\mathbf{e}^{i} \wedge \boldsymbol{E}_{i}=0$, we have

$$
\begin{align*}
0=\mathbf{e}^{i} \wedge \boldsymbol{E}_{i} & =c_{i j} \mathbf{e}^{i} \wedge \mathbf{e}^{j}+c_{i \alpha} \mathbf{e}^{i} \wedge \mathbf{e}^{\alpha} \\
& =\frac{1}{2}(\underbrace{c_{i j}-c_{j i}}_{0}) \mathbf{e}^{i} \wedge \mathbf{e}^{j}+\underbrace{c_{i \alpha}}_{0} \mathbf{e}^{i} \wedge \mathbf{e}^{\alpha} . \tag{249}
\end{align*}
$$

Therefore, we obtain the coefficients of \boldsymbol{E}_{i}

$$
\left\{\begin{array}{l}
c_{i j}=c_{j i}, \tag{250a}\\
c_{i \alpha}=0,
\end{array}\right.
$$

which means that $\boldsymbol{E}_{i}=c_{i j} \mathbf{e}^{j}$ is constructed by $\left\{\mathbf{e}_{j}\right\}$ only.
Orthonormal frame We have $d \mathbf{p}=\mathbf{p}_{i} d u^{i}$ with the basis \mathbf{p}_{i}, under the Gram-Schmit procedure, we can obtain an orthonormal frame ($\left.\mathbf{p} ; \mathbf{e}_{\hat{1}}, \mathbf{e}_{\hat{2}}, \mathbf{e}_{\hat{3}}\right)$ given by (110), (111) and (112), where we use the hatted indices to label the component of orthonormal frame now. We can expand \mathbf{p}_{i} by \mathbf{e}_{i} shown as

$$
\mathbf{p}_{i}=a^{\hat{j}}{ }_{i} \mathbf{e}_{\hat{j}} \quad(\hat{i}, \hat{j}=\hat{1}, \hat{2}) \quad \text { or } \quad\binom{\mathbf{p}_{1}}{\mathbf{p}_{2}}=\left(\begin{array}{ll}
a^{\hat{1}}{ }_{1} & a^{\hat{2}}{ }_{1} \tag{251}\\
a^{\hat{1}}{ }_{2} & a^{\hat{2}}{ }_{2}
\end{array}\right)\binom{\mathbf{e}_{\hat{1}}}{\mathbf{e}_{\hat{2}}},
$$

where we call the expansion factor $a^{\hat{j}}{ }_{i}$ the vielbein (vierbein or tetrad for 4-dimension), which can be regarded as the $G L(2, \mathbb{R})$ transformation of the frame on \mathcal{M}. Therefore, we have to obtain the differential of frame $\left(\mathbf{p} ; \mathbf{e}_{\hat{1}}, \mathbf{e}_{\hat{2}}, \mathbf{e}_{\hat{3}}\right)$. First we can rewrite $d \mathbf{p}$ spanned by frame $\left\{\mathbf{e}_{\hat{a}}\right\}$ as

$$
\begin{align*}
d \mathbf{p} & =\mathbf{p}_{1} d u^{1}+\mathbf{p}_{2} d u^{2} \\
& =\left(a^{\hat{1}}{ }_{1} \mathbf{e}_{\hat{1}}+a^{\hat{2}}{ }_{1} \mathbf{e}_{\hat{2}}\right) d u^{1}+\left(a^{\hat{1}}{ }_{2} \mathbf{e}_{\hat{1}}+a^{\hat{2}}{ }_{2} \mathbf{e}_{\hat{2}}\right) d u^{2} \\
& =\left(a^{\hat{1}}{ }_{1} d u^{1}+a^{\hat{1}}{ }_{2} d u^{2}\right) \mathbf{e}_{\hat{1}}+\left(a^{\hat{2}}{ }_{1} d u^{1}+a^{\hat{2}}{ }_{2} d u^{2}\right) \mathbf{e}_{\hat{2}}:=\vartheta^{\hat{1}} \mathbf{e}_{\hat{1}}+\vartheta^{\hat{2}} \mathbf{e}_{\hat{2}} \tag{252}
\end{align*}
$$

with

$$
\begin{equation*}
\vartheta^{\hat{i}}:=a^{\hat{i}}{ }_{j} d u^{j} \tag{253}
\end{equation*}
$$

Then we have to introduce the connection $\omega^{\hat{i}}$ for for $\mathbf{e}_{\hat{i}}$. As a result, $d \mathbf{e}_{\hat{i}}$ can be shown as

In particular, we call the connection form $\omega^{\hat{b}}{ }_{\hat{a}}=\omega^{\hat{b}}{ }_{\hat{a} \hat{c}} \vartheta^{\hat{c}}$ the linear connection form and the coefficient $\omega^{\hat{b}} \hat{a} \hat{c}$ the Ricci rotation coefficients in the orthonormal (non-coordinate) frame. However, we have condition for $\omega^{\hat{b}}{ }_{\hat{a}}$ due to the orthogonality

$$
\begin{equation*}
\mathbf{e}_{i} \cdot \mathbf{e}_{\hat{j}}=\delta_{\hat{i} \hat{j}} \quad \text { and } \quad \mathbf{e}_{\hat{a}} \cdot \mathbf{e}_{\hat{3}}=\delta_{\hat{a} \hat{3}} . \tag{255}
\end{equation*}
$$

We can differentiate the orthogonality condition $\mathbf{e}_{\hat{i}} \cdot \mathbf{e}_{\hat{j}}=\delta_{\hat{i} \hat{j}}$, thus we have

$$
\begin{align*}
d\left(\mathbf{e}_{\hat{i}} \cdot \mathbf{e}_{\hat{j}}\right) & =d \mathbf{e}_{i} \cdot \mathbf{e}_{\hat{j}}+\mathbf{e}_{\hat{i}} \cdot d \mathbf{e}_{\hat{j}} \\
& =\omega^{\hat{k}} \mathbf{i}_{\hat{k}} \mathbf{e}_{\hat{k}} \cdot \mathbf{e}_{\hat{j}}+\mathbf{e}_{\hat{i}} \cdot \omega^{\hat{k}}{ }_{\hat{j}} \mathbf{e}_{\hat{k}} \\
& =\omega^{\hat{k}_{\hat{i}}} \delta_{\hat{k} \hat{j}}+\omega^{\hat{k}}{ }_{\hat{j}} \delta_{\hat{i} \hat{k}} \\
& =\omega^{\hat{j}_{\hat{i}}}+\omega^{\hat{i}}{ }_{\hat{j}}=0 . \tag{256}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
d\left(\mathbf{e}_{i} \cdot \mathbf{e}_{\hat{3}}\right)=\omega^{\hat{3}_{\hat{i}}}+\omega^{\hat{i}}{ }_{\hat{3}}=0 \tag{257}
\end{equation*}
$$

from $\mathbf{e}_{\hat{i}} \cdot \mathbf{e}_{\hat{3}}=\delta_{\hat{i} \hat{3}}$. Therefore, all the components of $\omega^{\hat{b}}{ }_{\hat{a}}$ are anti-symmetric in the orthonormal frame, we have the consequence:

- The metric compatibility gives the anti-symmetric property for linear connection form in the orthonormal frame, i.e.,

$$
\begin{equation*}
\nabla_{\hat{c}} g_{\hat{a} \hat{b}}=\nabla_{\hat{c}} \delta_{\hat{a} \hat{b}}=\underbrace{\mathbf{e}_{\hat{c}}\left(\delta_{\hat{a} \hat{b}}\right)}_{0}-\omega^{\hat{b}}{ }_{\hat{a} \hat{c}}-\omega^{\hat{a}}{ }_{\hat{b} \hat{c}}=0 \Longrightarrow \omega^{\hat{b}}{ }_{\hat{a} \hat{c}}=-\omega^{\hat{a}}{ }_{\hat{b} \hat{c}} \text {. } \tag{258}
\end{equation*}
$$

Remark. In pseudo-Riemannian space, we have

$$
\begin{equation*}
d\left(\mathbf{e}_{\hat{a}} \cdot \mathbf{e}_{\hat{b}}\right)=\omega^{\hat{c}}{ }_{\hat{a}} \eta_{\hat{c} \hat{b}}+\omega^{\hat{c}}{ }_{\hat{b}} \eta_{\hat{a} \hat{c}}=\omega_{\hat{b} \hat{a}}+\omega_{\hat{a} \hat{b}}=0, \tag{259}
\end{equation*}
$$

and the metric compatibility in pseudo-orthonormal frame should be read as

$$
\begin{equation*}
\nabla_{\hat{c}} g_{\hat{a} \hat{b}}=\nabla_{\hat{c}} \eta_{\hat{a} \hat{b}}=\underbrace{\mathbf{e}_{\hat{c}}\left(\eta_{\hat{a} \hat{b}}\right)}_{0}-\omega^{\hat{d}}{ }_{\hat{a} \hat{c}} \eta_{\hat{d} \hat{b}}-\omega^{\hat{d}} \hat{b}_{\hat{c}} \eta_{\hat{a} \hat{d}}=0 \quad \Longrightarrow \quad \omega_{\hat{a} \hat{a} \hat{c}}=-\omega_{\hat{a} \hat{b} \hat{c}} . \tag{260}
\end{equation*}
$$

Finally the equation (254) is reduced to

$$
\left\{\begin{array}{l}
d \mathbf{e}_{\hat{1}}=\omega^{\hat{1}}{ }_{\hat{1}} \mathbf{e}_{\hat{2}}+\omega^{\hat{3}}{ }_{\hat{1}} \mathbf{n} \tag{261a}\\
d \mathbf{e}_{\hat{2}}=\omega^{1}{ }_{\hat{1}} \mathbf{e}_{\hat{1}}+\omega^{\hat{3}}{ }_{\hat{\hat{N}}} \mathbf{n} \\
d \mathbf{n}=\omega^{\hat{1}}{ }_{\hat{\mathbf{1}}}^{\hat{1}}{ }_{\hat{1}}+\omega^{2}{ }_{\hat{3}} \mathbf{e}_{\hat{2}}
\end{array}\right.
$$

Now we can write down the first, second and third fundamental form in orthonormal frame, which are given by

It can be shown that $\omega^{\hat{3}} \hat{\hat{1}}$ and $\omega^{\hat{3}}{ }_{\hat{2}}$ are linear combinations of $\vartheta^{\hat{i}}$ or $d u^{i}$ given by (290)due to Cartan's first structure equation (be introduced later) and Cartan's lemma

$$
\left\{\begin{array}{l}
\omega_{\hat{3}}^{\hat{1}}=b_{\hat{1} \hat{1}} \vartheta^{\hat{1}}+b_{\hat{1} \hat{2}} \vartheta^{\hat{2}}, \tag{263}\\
\omega_{\hat{3}}^{\hat{3}}=b_{\hat{2} \hat{1}} \vartheta^{\hat{1}}+b_{\hat{2} \hat{2}} \vartheta^{\hat{2}} .
\end{array} \quad \Longrightarrow \quad\binom{\omega^{\hat{3}} \hat{\hat{1}}}{\omega_{\hat{2}}^{\hat{2}}}=\left(\begin{array}{ll}
b_{\hat{1} \hat{1}} & b_{\hat{1} \hat{2}} \\
b_{\hat{2} \hat{1}} & b_{\hat{2} \hat{2}}
\end{array}\right)\binom{\vartheta^{\hat{1}}}{\vartheta^{\hat{2}}} .\right.
$$

Consequently, the second fundamental form becomes

$$
\begin{equation*}
\mathbf{I I}=b_{\hat{1} \hat{1}}\left(\vartheta^{\hat{1}}\right)^{2}+b_{\hat{1} \hat{2}} \vartheta^{\hat{2}} \vartheta^{\hat{1}}+b_{\hat{2} \hat{1}} \vartheta^{\hat{1}} \vartheta^{\hat{2}}+b_{\hat{2} \hat{2}}\left(\vartheta^{\hat{2}}\right)^{2}=b_{\hat{i} \hat{j}} \vartheta^{\hat{\imath}} \vartheta^{\hat{j}} . \tag{264}
\end{equation*}
$$

We consider the following matrix representation for tensors

$$
\begin{equation*}
\mathbf{e}_{\hat{i}} \longrightarrow \boldsymbol{e}, \quad \vartheta^{\hat{i}} \longrightarrow \boldsymbol{\vartheta}, \quad b_{\hat{i} \hat{j}} \longrightarrow \boldsymbol{B} \tag{265}
\end{equation*}
$$

Under the special orthogonal transformation $S O(2, \mathbb{R})$ for frame and coframe, we have a new orthonormal frame

$$
\left\{\begin{array}{l}
\boldsymbol{e}^{\prime}=\boldsymbol{P} \boldsymbol{e} \tag{266}\\
\boldsymbol{\vartheta}^{\prime}=\boldsymbol{P}^{\top} \boldsymbol{\vartheta}
\end{array} \quad \text { with } \quad \boldsymbol{P}^{\top}=\boldsymbol{P}^{-1}\right.
$$

where $\boldsymbol{P} \in S O(2, \mathbb{R})$ and T means the transpose operation for matrix. As a result, we can obtain the diagonal matrix $\boldsymbol{B}_{\mathrm{D}}$ from \boldsymbol{B} through \boldsymbol{P} by

$$
\begin{equation*}
\mathbf{I I}=\boldsymbol{\vartheta}^{\top} \boldsymbol{B} \boldsymbol{\vartheta}=\left(\boldsymbol{\vartheta}^{\prime}\right)^{\top} \underbrace{\boldsymbol{P}^{\top} \boldsymbol{B} \boldsymbol{P}}_{\boldsymbol{B}_{\mathrm{D}}} \boldsymbol{\vartheta}^{\prime} \tag{267}
\end{equation*}
$$

i.e.,

$$
\boldsymbol{B} \longrightarrow \boldsymbol{B}_{\mathrm{D}}=\boldsymbol{P}^{\top} \boldsymbol{B} \boldsymbol{P}=\left(\begin{array}{cc}
\kappa_{1} & 0 \tag{268}\\
0 & \kappa_{2}
\end{array}\right)
$$

Therefore, the Gauss curvature and mean curvature can be obtained easily by

$$
\left\{\begin{array}{l}
K=\operatorname{det}\left(\boldsymbol{B}_{\mathrm{D}}\right)=\operatorname{det}\left(\boldsymbol{P}^{\boldsymbol{\top}}\right) \operatorname{det}(\boldsymbol{B}) \operatorname{det}(\boldsymbol{P})=\operatorname{det}(\boldsymbol{B})=b_{\hat{1} \hat{1}} b_{\hat{2} \hat{2}}-b_{\hat{1} \hat{2}} b_{\hat{2} \hat{1}}, \tag{269a}\\
H=\frac{1}{2} \operatorname{tr} \boldsymbol{B}_{\mathrm{D}}=\frac{1}{2} \operatorname{tr} \boldsymbol{B}=\frac{1}{2}\left(b_{\hat{1} \hat{1}}+b_{\hat{2} \hat{2}}\right),
\end{array}\right.
$$

respectively, where the trace of the matrix \boldsymbol{B} is invariant under the $S O(2, \mathbb{R})$ transformation.

Covariant exterior differentiation We define some notation for differential operators for function, vector and 1-form. We use d, \mathbf{d} and \mathbf{d}_{∇} for differentiation, exterior differentiation and covariant exterior differentiation respectively.

- For a function (0-form) f, the differential $d f$ which can also be regarded as the exterior differentiation of 0 -form f :

$$
\begin{equation*}
\mathbf{d}_{\nabla} f=\mathbf{d} f=d f . \tag{270}
\end{equation*}
$$

- For a vector $\mathbf{e}_{\hat{i}}$, we have an absolute differential of vector $d \mathbf{e}_{\hat{i}}$ which is described by Gauss formulas in differential form formalism (126):

$$
\begin{equation*}
\mathbf{d}_{\nabla} \mathbf{e}_{\hat{i}}=d \mathbf{e}_{\hat{i}}=D \mathbf{e}_{i}+b_{\hat{i}} \mathbf{n}, \tag{271}
\end{equation*}
$$

is a vector-valued 1 -form. If there is no normal space \mathcal{M}^{\perp} of \mathcal{M}, i.e., there are no \mathbf{n} vector and $b_{\hat{i} \hat{j}}$, the differential is actually equal to the orthogonal projection of vector $\mathbf{e}_{\hat{i}}$ on \mathcal{M}

$$
\begin{equation*}
\mathbf{d}_{\nabla} \mathbf{e}_{\hat{i}}=d \mathbf{e}_{\hat{i}}=D \mathbf{e}_{\hat{i}} . \tag{272}
\end{equation*}
$$

- For an 1-form $\vartheta^{\hat{i}}$, we only do the exterior differentiation on $\vartheta^{\hat{i}}$:

$$
\begin{equation*}
\mathbf{d}_{\nabla} \vartheta^{\hat{i}}=\mathbf{d} \vartheta^{\hat{i}} . \tag{273}
\end{equation*}
$$

Remark. The covariant exterior differentiation \mathbf{d}_{∇} is a combined operator, which do the exterior differentiation and covariant derivative on an 1-form and vector respectively.

For a function f, we also note that the second differentiation is

$$
\begin{equation*}
d^{2} f(x, y)=\frac{\partial^{2} f}{\partial x \partial x} d x d x+\frac{\partial^{2} f}{\partial y \partial x} d x d y+\frac{\partial^{2} f}{\partial x \partial y} d y d x+\frac{\partial^{2} f}{\partial y \partial y} d y d y \neq 0 \tag{274}
\end{equation*}
$$

which should not be confused with the second exterior differentiation

$$
\begin{equation*}
\mathbf{d}^{2} f(x, y)=\mathbf{d} d f=\frac{\partial^{2} f}{\partial y \partial x} d x \wedge d y+\frac{\partial^{2} f}{\partial x \partial y} d y \wedge d x=\left(\frac{\partial^{2} f}{\partial y \partial x}-\frac{\partial^{2} f}{\partial x \partial y}\right) d x \wedge d y=0 \tag{275}
\end{equation*}
$$

In addition, \mathbf{d}_{∇}^{2} would not be vanished in general. Therefore, the second fundamental form is

$$
\begin{equation*}
\mathbf{I I}=-d \mathbf{p} \cdot d \mathbf{n}=+d^{2} \mathbf{p} \cdot \mathbf{n}=\left(\mathbf{p}_{i j} d u^{i} d u^{j}\right) \cdot \mathbf{n}=b_{i j} d u^{i} d u^{j} \tag{276}
\end{equation*}
$$

due to $d \mathbf{p} \cdot \mathbf{n}=0$ which has been shown in the last term in (120). We note that $d^{2} \mathbf{p}$ should be realized as a second covariant derivatives of \mathbf{p} in (280).

For coframe $d u^{i}$, the corresponding exterior differentiation is vanished, which is shown as

$$
\begin{equation*}
\mathbf{d} d u^{i}=\mathbf{d}^{2} u^{i}=0 . \tag{277}
\end{equation*}
$$

We call $\frac{\partial}{\partial u^{i}}$ a holonomic frame and du u^{i} a holonomic coframe which is an exact form according to the Poincaré lemma. For $\vartheta^{\hat{i}}=a^{\hat{i}} d u^{j}$, its exterior differentiation is

$$
\begin{equation*}
\mathbf{d} \vartheta^{\hat{i}}=\mathbf{d} a^{\hat{i}}{ }_{j} \wedge \mathbf{d} u^{j}+a^{\hat{i}}{ }_{j} \mathbf{d}^{2} u^{j} \neq 0, \tag{278}
\end{equation*}
$$

which is called an anholonomic coframe or a Pfaffian form dual to the anholonomic frame $\mathbf{e}_{\hat{i}}$.

Supplement. We note that the exterior 2-form $\mathbf{d}_{\nabla}^{2} \mathbf{e}_{i}$ will be introduced as the second structure equation through the covariant exterior differentiation and related to the curvature 2-form of (293) and structure constants of (315) later

$$
\begin{align*}
& \mathbf{d}_{\nabla}^{2} \mathbf{e}_{\hat{i}}=\mathbf{d}_{\nabla}\left(d \mathbf{e}_{\hat{i}}\right)=\frac{1}{2} R_{\hat{i} \hat{j} \hat{k}}^{\hat{l}} \vartheta^{\hat{j}} \wedge \vartheta^{\hat{k}} \otimes \mathbf{e}_{\hat{l}} \tag{279a}\\
& =\mathbf{d}_{\nabla}\left(\vartheta^{\hat{k}} D_{\hat{k}} \mathbf{e}_{\hat{i}}\right)=\underbrace{\mathbf{d}_{\nabla} \vartheta^{\hat{k}}}_{(315)} \otimes \underbrace{D_{\hat{k}} \mathbf{e}_{\hat{i}}}_{\Gamma^{\hat{i}} \hat{\hat{i}}, \mathbf{e}_{\hat{i}}}-\vartheta^{\hat{k}} \wedge \vartheta^{\hat{j}} \otimes D_{\hat{j}} D_{\hat{k}} \mathbf{e}_{\hat{i}} \\
& =-\frac{1}{2} c^{\hat{k}}{ }_{\hat{j} \hat{m}} \vartheta^{\hat{j}} \wedge \vartheta^{\hat{m}} \otimes \Gamma^{\hat{l}}{ }_{\hat{i} \hat{k}} \mathbf{e}_{\hat{l}}+\vartheta^{\hat{j}} \wedge \vartheta^{\hat{k}} \otimes \frac{1}{2}\left(D_{\hat{j}} D_{\hat{k}}-D_{\hat{k}} D_{\hat{j}}\right) \mathbf{e}_{\hat{i}} \\
& \stackrel{\hat{k} \leftrightarrow \hat{m}}{=} \vartheta^{\hat{j}} \wedge \vartheta^{\hat{k}} \otimes \frac{1}{2}(-c^{\hat{m}}{ }_{\hat{j} \hat{k}} \underbrace{\Gamma_{\hat{i} \hat{m}}^{\hat{l}} \mathbf{e}_{\hat{i}}}_{D_{\hat{m}} \mathbf{e}_{\hat{i}}}+\left(D_{\hat{j}} D_{\hat{k}}-D_{\hat{k}} D_{\hat{j}}\right) \mathbf{e}_{\hat{i}}) \\
& =\vartheta^{\hat{j}} \wedge \vartheta^{\hat{k}} \otimes \frac{1}{2}\left(-c^{\hat{m}}{ }_{\hat{j} \hat{k}} D_{\hat{m}}+D_{\hat{j}} D_{\hat{k}}-D_{\hat{k}} D_{\hat{j}}\right) \mathbf{e}_{\hat{i}} \text {. } \tag{279b}
\end{align*}
$$

However, the second covariant derivatives of a vector $\mathbf{e}_{\hat{i}}$ should be

$$
\begin{align*}
d^{2} \mathbf{e}_{\hat{i}} & =D^{2} \mathbf{e}_{\hat{i}}=D\left(\vartheta^{\hat{k}} \otimes D_{\hat{k}} \mathbf{e}_{\hat{i}}\right)=\vartheta^{\hat{j}} \otimes \underbrace{D_{\hat{j}} \vartheta^{\hat{k}}}_{\Gamma^{\hat{k}} \hat{j} \vartheta^{\hat{m}}} \otimes \underbrace{D_{\hat{k}} \mathbf{e}_{\hat{i}}}_{\Gamma_{\hat{i} \hat{k}} \mathbf{e}_{\hat{l}}}+\vartheta^{\hat{j}} \otimes \vartheta^{\hat{k}} \otimes D_{\hat{j}} D_{\hat{k}} \mathbf{e}_{\hat{i}} \\
& \stackrel{\hat{k} \leftrightarrow \hat{m}}{=} \vartheta^{\hat{j}} \otimes \vartheta^{\hat{k}} \otimes(\Gamma^{\hat{m}}{ }_{\hat{j} \hat{k}} \underbrace{\Gamma_{\hat{i} \hat{m}} \mathbf{e}_{\hat{i}}}_{D_{\hat{m}} \hat{\mathbf{e}}_{\hat{i}}}+D_{\hat{j}} D_{\hat{k}} \mathbf{e}_{\hat{i}}) \\
& =\vartheta^{\hat{j}} \otimes \vartheta^{\hat{k}} \otimes\left(\Gamma_{\hat{j} \hat{j} \hat{k}}^{\hat{m}} D_{\hat{m}}+D_{\hat{j}} D_{\hat{k}}\right) \mathbf{e}_{i} . \tag{280}
\end{align*}
$$

Therefor, we conclude that $\mathbf{d}_{\nabla}^{2} \mathbf{e}_{i} \neq d^{2} \mathbf{e}_{i}$ because $d \mathbf{e}_{i}$ is a vector-valued l-form. We note that that the wedge product is obtained by anti-symmetrizing the tensor product

$$
\begin{equation*}
A \wedge B=(A \otimes B)^{\mathbf{A}}=\frac{1}{2!}(A \otimes B-B \otimes A)=\frac{1}{2}\left(A_{\hat{i}} B_{\hat{j}}-B_{\hat{j}} A_{\hat{i}}\right) \vartheta^{\hat{i}} \wedge \vartheta^{\hat{j}} \tag{281}
\end{equation*}
$$

where \mathbf{A} indicates the anti-symmetrization. The anti-symmetrization of $D_{\hat{j}} D_{\hat{k}} \mathbf{e}_{\hat{i}}$ and $\Gamma^{\hat{m}}{ }_{\hat{j} \hat{k}}$ will be given later, which are shown in (318) and (327b) respectively. As a result, the anti-symmetrization of $d^{2} \mathbf{e}_{i}$ can be shown as

$$
\begin{equation*}
\left(d^{2} \mathbf{e}_{\hat{i}}\right)^{\mathbf{A}}=\left(D^{2} \mathbf{e}_{\hat{i}}\right)^{\mathbf{A}}=D \wedge D \mathbf{e}_{i}=\vartheta^{\hat{j}} \wedge \vartheta^{\hat{k}} \otimes \frac{1}{2}\left(-T^{\hat{m}}{ }_{\hat{j} \hat{k}} D_{\hat{m}}+R_{\hat{i} \hat{j} \hat{k}}^{\hat{l}}\right) \mathbf{e}_{\hat{l}} \quad(c f . \text { (279a) or (293)). } \tag{282}
\end{equation*}
$$

Canonical 1-form In general case, $\left\{\mathbf{e}_{\hat{a}}\right\}$ does not necessarily be chosen as orthonormal, i.e., the metric tensor is $\mathbf{e}_{\hat{a}} \cdot \mathbf{e}_{\hat{b}}=g_{\hat{a} \hat{b}} \neq \delta_{\hat{a} \hat{b}}$. If $\left\{\mathbf{e}_{\hat{a}}\right\}$ is an orthonormal frame, we have anti-symmetric property of (256) and (257). We would discuss from the differential of frame ($\mathbf{p} ; \mathbf{e}_{\hat{1}}, \mathbf{e}_{\hat{2}}, \mathbf{e}_{\hat{3}}$) and write the equations by the covariant exterior differentiation as

$$
\left\{\begin{align*}
\mathbf{d}_{\nabla} \mathbf{p} & =\vartheta^{\hat{a}} \otimes \mathbf{e}_{\hat{a}}:=\vartheta, \tag{283a}\\
\mathbf{d}_{\nabla} \mathbf{e}_{\hat{a}} & =\omega^{\hat{b}} \hat{a} \otimes \mathbf{e}_{\hat{b}}
\end{align*}\right.
$$

where we have defined $\vartheta:=\mathbf{d}_{\nabla} \mathbf{p}=d \mathbf{p}$ the canonical l-form, which is a vector-valued l-form. We will show that the canonical 1-form ϑ is an identity map of vector in the frame $\mathbf{e}_{\hat{a}}$. Consider a vector $V=V^{\hat{b}} \mathbf{e}_{\hat{b}}$, the canonical 1-form act on V gives

$$
\begin{equation*}
\vartheta(V)=\vartheta^{\hat{a}} \otimes \mathbf{e}_{\hat{a}}\left(V^{\hat{b}} \mathbf{e}_{\hat{b}}\right)=V^{\hat{b}} \vartheta^{\hat{a}}\left(\mathbf{e}_{\hat{b}}\right) \mathbf{e}_{\hat{a}}=V^{\hat{b}} \delta_{\hat{b}}^{\hat{a}} \mathbf{e}_{\hat{a}}=V^{\hat{b}} \mathbf{e}_{\hat{b}}=V . \tag{284}
\end{equation*}
$$

Remark. If we consider a point \mathbf{p} move on the surface \mathcal{M} in \mathbb{E}^{3}, the differential would be a vector spanned by $\mathbf{e}_{\hat{1}}$ and $\mathbf{e}_{\hat{2}}$ only, which would be written as

$$
\begin{equation*}
\mathbf{d}_{\nabla} \mathbf{p}=\vartheta^{\hat{a}} \mathbf{e}_{\hat{a}}=\vartheta^{\hat{i}} \mathbf{e}_{\hat{i}}=\vartheta^{\hat{1}} \mathbf{e}_{\hat{1}}+\vartheta^{\hat{2}} \mathbf{e}_{\hat{2}} \tag{285}
\end{equation*}
$$

with $\vartheta^{\hat{3}}=0$, it would be reduced to the equation given by (252).

Cartan's first structure equation Now we do the covariant exterior differentiation on (283). The covariant exterior differentiation of (283a) is

$$
\begin{align*}
\mathbf{d}_{\nabla} \vartheta=\mathbf{d}_{\nabla}^{2} \mathbf{p} & =\mathbf{d}_{\nabla}\left(\vartheta^{\hat{a}} \otimes \mathbf{e}_{\hat{a}}\right) \\
& =\mathbf{d} \vartheta^{\hat{a}} \otimes \mathbf{e}_{\hat{a}}+(-1) \vartheta^{\hat{a}} \wedge \bar{D} \mathbf{e}_{\hat{a}} \\
& =\mathbf{d} \vartheta^{\hat{a}} \mathbf{e}_{\hat{a}}-\vartheta^{\hat{a}} \wedge \omega^{\hat{b}} \hat{a} \mathbf{e}_{\hat{b}} \\
& =\left(\mathbf{d} \vartheta^{\hat{a}}+\omega^{\hat{a}} \hat{b} \wedge \vartheta^{\hat{b}}\right) \mathbf{e}_{\hat{a}} \\
& =\left(\mathbf{d}_{\nabla} \vartheta\right)^{\hat{a}} \mathbf{e}_{\hat{a}} \\
& :=\mathcal{T}^{\hat{a}} \mathbf{e}_{\hat{a}}=\mathcal{T} \neq 0, \tag{286}
\end{align*}
$$

where \bar{D} is a connection with respect to $\mathbf{e}_{\hat{a}}$. Here we have defined \mathcal{T} the vector-valued torsion 2 -form and the corresponding component the torsion 2-form as

$$
\begin{equation*}
\mathcal{T}^{\hat{a}}:=\left(\mathbf{d}_{\nabla} \vartheta\right)^{\hat{a}}:=\underset{\text { component of } \vartheta}{\mathbf{D}} \underbrace{\vartheta^{\hat{a}}}:=\mathbf{d} \vartheta^{\hat{a}}+\omega^{\hat{b}}{ }_{\hat{b}} \wedge \vartheta^{\hat{b}}, \tag{287}
\end{equation*}
$$

where \mathbf{D} can be identified as operation

$$
\begin{equation*}
\mathbf{D}=\mathbf{d}+\omega \wedge \tag{288}
\end{equation*}
$$

act on the differential form which is the component of the corresponding vector-valued form. The equation (287) we obtained is called Cartan's first structure equation.

Remark. Since \mathbf{p} moves on the surface \mathcal{M} in \mathbb{E}^{3}, we have $\mathbf{d}_{\nabla} \mathbf{p}=\vartheta^{\hat{1}} \mathbf{e}_{\hat{1}}+\vartheta^{\hat{2}} \mathbf{e}_{\hat{2}}$ and $\vartheta^{\hat{3}}=0$. Follow Cartan's first structure equation (287), we have

$$
\begin{equation*}
0=\mathbf{d}_{\nabla} \vartheta^{\hat{3}}=-\omega^{\hat{3}} \hat{1}_{\hat{1}} \wedge \vartheta^{\hat{1}}-\omega_{\hat{2}}^{\hat{2}} \wedge \vartheta^{\hat{2}}=-\omega_{\hat{i}}^{\hat{i}} \wedge \vartheta^{\hat{i}} . \tag{289}
\end{equation*}
$$

According to Cartan's lemma, the connection form is obtained as

$$
\begin{equation*}
\omega^{\hat{3}} \hat{i}=b_{\hat{i} \hat{j}} \vartheta^{\hat{j}}, \tag{290}
\end{equation*}
$$

which gives the equations (263).

Figure 8: Torsion is related to the translation.

We can consider an infinitesimal contour integral for $\mathbf{d}_{\nabla} \mathbf{p}$ infinitesimally around a point as a boundary ∂D of a small region D. By applying Stokes' theorem to the contour integral of $\mathbf{d}_{\nabla} \mathbf{p}$ over ∂D gives

$$
\begin{equation*}
\oint_{\partial D} \mathbf{d}_{\nabla} \mathbf{p}=\int_{D} \mathbf{d}_{\nabla}^{2} \mathbf{p}=\int_{D} \mathcal{T} \tag{291}
\end{equation*}
$$

or equivalent to

$$
\begin{equation*}
\oint_{\partial D} \vartheta^{\hat{a}}=\int_{D} \mathbf{D} \vartheta^{\hat{a}}=\int_{D} \mathcal{T}^{\hat{a}} . \tag{292}
\end{equation*}
$$

The integral result implies that the translation of a point or the displacement $\mathbf{d}_{\nabla} \mathbf{p}$ is associated with the torsion. If there is no displacement, i.e. $\mathbf{d}_{\nabla} \mathbf{p}=0$, the space would not be twisted.

Cartan's second structure equation Similarly, we do the covariant exterior differentiation on (283b) and obtain

$$
\begin{align*}
\mathbf{d}_{\nabla}^{2} \mathbf{e}_{\hat{a}} & =\mathbf{d}_{\nabla}\left(\omega^{{ }_{\hat{b}}^{a}}\right. \\
& \left.\otimes \mathbf{e}_{\hat{b}}\right) \\
& =\mathbf{d} \omega^{\hat{b}}{ }_{\hat{a}} \otimes \mathbf{e}_{\hat{b}}+(-1) \omega^{\hat{b}}{ }_{\hat{a}} \wedge \bar{D} \mathbf{e}_{\hat{b}} \\
& =\mathbf{d} \omega^{\hat{b}} \mathbf{\hat { a }}_{\hat{b}}-\omega^{\hat{b}}{ }_{\hat{a}} \wedge \omega^{\hat{c}_{\hat{b}}} \mathbf{e}_{\hat{c}} \\
& =\left(\mathbf{d} \omega^{\hat{b}}{ }_{\hat{a}}+\omega^{\hat{b}_{\hat{c}}} \wedge \omega^{\hat{c}}{ }_{\hat{a}}\right) \mathbf{e}_{\hat{b}} \\
& =\left(\mathbf{d}_{\nabla}^{2} \mathbf{e}_{\hat{a}}\right)^{\hat{b}^{b}} \mathbf{e}_{\hat{b}} \tag{293}\\
& :=\mathcal{R}^{\hat{b}}{ }_{\hat{a}} \mathbf{e}_{\hat{b}}=\mathcal{R}_{\hat{a}} \neq 0 .
\end{align*}
$$

Therefore we have the vector-valued curvature 2-form $\mathcal{R}_{\hat{a}}$ with the corresponding component curvature 2 -form given by

$$
\begin{equation*}
\mathcal{R}_{\hat{a}}^{\hat{a}}:=\left(\mathbf{d}_{\nabla}^{2} \mathbf{e}_{\hat{a}}\right)^{\hat{b}}:=\mathbf{D} \underbrace{\omega^{\hat{b}}}:=\mathbf{d} \omega^{\hat{b}}{ }_{\hat{a}}+\omega^{\hat{b}}{ }_{\hat{c}} \wedge \omega^{\hat{c}}{ }_{\hat{a}}, \tag{294}
\end{equation*}
$$

which is called Cartan's second structure equation.

Figure 9: Curvature is related to the rotation.
The similar infinitesimal contour integral for $\mathbf{d}_{\nabla} \mathbf{e}_{\hat{a}}$ gives

$$
\begin{equation*}
\oint_{\partial D} \mathbf{d}_{\nabla} \mathbf{e}_{\hat{a}}=\int_{D} \mathbf{d}_{\nabla}^{2} \mathbf{e}_{\hat{a}}=\int_{D} \mathcal{R}_{\hat{a}} \tag{295}
\end{equation*}
$$

or equivalent to

$$
\begin{equation*}
\oint_{\partial D} \omega^{\hat{b}_{\hat{a}}}=\int_{D} \mathbf{D} \omega^{\hat{b}_{\hat{a}}}=\int_{D} \mathcal{R}_{\hat{a}}^{\hat{b}}, \tag{296}
\end{equation*}
$$

which means that the rotation of a vector is associated with the curvature. If the vector does not change the direction after moving around a contour, i.e. $\mathbf{d}_{\nabla} \mathbf{e}_{\hat{a}}=0$, the space would be flat.

First Bianchi identity The exterior differentiation of two structure equations can get more information of torsion and curvature. The structure equations are

$$
\left\{\begin{align*}
\mathcal{T}^{\hat{a}} & =\mathbf{d} \vartheta^{\hat{a}}+\omega^{\hat{a}} \hat{\hat{b}} \wedge \vartheta^{\hat{b}}, \tag{297a}\\
\mathcal{R}^{\hat{a}} & =\mathbf{d} \omega^{\hat{a}}{ }_{\hat{b}}+\omega^{\hat{a}}{ }_{\hat{c}} \wedge \omega^{\hat{c}}{ }_{\hat{b}}
\end{align*}\right.
$$

We take the exterior differentiation of the first structure equation shown by

$$
\begin{align*}
\mathbf{d} \mathcal{T}^{\hat{a}} & =\mathbf{d}^{2} \vartheta^{\hat{a}}+\mathbf{d} \omega^{\hat{a}}{ }_{\hat{b}} \wedge \vartheta^{\hat{b}}-\omega^{\hat{a}}{ }_{\hat{b}} \wedge \mathbf{d} \vartheta^{\hat{b}} \\
& =\left(\mathcal{R}^{\hat{a}}{ }_{\hat{b}}-\omega^{\hat{a}}{ }_{\hat{c}} \wedge \omega^{\hat{c}}{ }_{\hat{b}}\right) \wedge \vartheta^{\hat{b}}-\omega^{\hat{a}}{ }_{\hat{b}} \wedge\left(\mathcal{T}^{\hat{b}}-\omega^{\hat{b}}{ }_{\hat{c}} \wedge \vartheta^{\hat{c}}\right) \\
& =\mathcal{R}^{\hat{a}}{ }_{\hat{b}} \wedge \vartheta^{\hat{b}}-\omega^{\hat{a}} \hat{\hat{c}} \wedge \omega^{\hat{c}} \hat{b}_{\hat{b}} \wedge \vartheta^{\hat{b}}-\omega^{\hat{a}}{ }_{\hat{b}} \wedge \mathcal{T}^{\hat{b}}+\omega^{\hat{a}}{ }_{\hat{b}} \wedge \omega_{\hat{c}}^{\hat{c}} \wedge \vartheta^{\hat{c}} \tag{298}
\end{align*}
$$

then we obtain the first Bianchi identity

$$
\begin{equation*}
\mathbf{D} \mathcal{T}^{\hat{a}}=\mathbf{d} \mathcal{T}^{\hat{a}}+\omega^{\hat{a}}{ }_{\hat{b}} \wedge \mathcal{T}^{\hat{b}}=\mathcal{R}_{\hat{b}}^{\hat{a}} \wedge \vartheta^{\hat{b}} \tag{299}
\end{equation*}
$$

If we have torsion-free condition $\mathcal{T}^{\hat{a}}=0$, the first Bianchi identity becomes

$$
\begin{align*}
0 & =\mathcal{R}^{\hat{a}}{ }_{\hat{b}} \wedge \vartheta^{\hat{b}} \\
& =\frac{1}{2} R^{\hat{a}}{ }_{\hat{b} \hat{d}} \vartheta^{\hat{c}} \wedge \vartheta^{\hat{d}} \wedge \vartheta^{\hat{b}} \\
& =\frac{1}{2}\left(R_{\hat{a}}^{\hat{a} \hat{c} \hat{d}}\right. \\
& \left.+R_{{ }_{\hat{c}}^{\hat{c}} \hat{b}}^{\hat{b}}+R_{{ }_{d} \hat{d} \hat{c}}^{\hat{c}}-R^{\hat{a}}{ }_{\hat{b} \hat{d} \hat{c}}-R^{\hat{a}}{ }_{\hat{c} \hat{b} \hat{d}}-R^{\hat{a}}{ }_{\hat{d} \hat{c} \hat{b}}\right) \vartheta^{\hat{c}} \wedge \vartheta^{\hat{d}} \wedge \vartheta^{\hat{b}} \tag{300}\\
& =\left(R_{\hat{b} \hat{c} \hat{d}}+R^{\hat{a}}{ }_{\hat{c} \hat{d} \hat{b}}+R^{\hat{a}}{ }_{\hat{d} \hat{b} \hat{c}}\right) \vartheta^{\hat{c}} \wedge \vartheta^{\hat{d}} \wedge \vartheta^{\hat{b}},
\end{align*}
$$

resulting in

$$
\begin{equation*}
R^{\hat{a}}{ }_{\hat{b} \hat{c} \hat{d}}+R_{\hat{a} \hat{d} \hat{b}}^{\hat{a}}+R^{\hat{a}}{ }_{\hat{d} \hat{c} \hat{c}}=0 . \tag{301}
\end{equation*}
$$

Second Bianchi identity Similarly, the exterior differentiation of the second structure equation is

$$
\begin{align*}
& \mathbf{d} \mathcal{R}^{\hat{a}}{ }_{\hat{b}}=\mathbf{d}^{2} \omega^{\hat{a}}{ }_{\hat{b}}+\mathbf{d} \omega^{\hat{a}}{ }_{\hat{c}} \wedge \omega^{\hat{c}}{ }_{\hat{b}}-\omega^{\hat{a}}{ }_{\hat{c}} \wedge \mathbf{d} \omega^{\hat{c}_{\hat{b}}} \\
& =\left(\mathcal{R}^{\hat{a}}{ }_{\hat{c}}-\omega^{\hat{a}}{ }_{\hat{d}} \wedge \omega^{\hat{d}}{ }_{\hat{c}}\right) \wedge \omega^{\hat{c}}{ }_{\hat{b}}-\omega^{\hat{a}}{ }_{\hat{c}} \wedge\left(\mathcal{R}^{\hat{c}}{ }_{\hat{b}}-\omega^{\hat{c}}{ }_{\hat{d}} \wedge \omega^{\hat{d}}{ }_{\hat{b}}\right) \tag{302}
\end{align*}
$$

which leads to the second Bianchi identity

$$
\begin{equation*}
\mathbf{D} \mathcal{R}^{\hat{a}}{ }_{\hat{b}}=\mathbf{d} \mathcal{R}_{\hat{b}}-\omega^{\hat{c}}{ }_{\hat{b}} \wedge \mathcal{R}^{\hat{a}}{ }_{\hat{c}}+\omega^{\hat{a}}{ }_{\hat{c}} \wedge \mathcal{R}_{\hat{b}}^{\hat{c}_{\hat{b}}}=0 \tag{303}
\end{equation*}
$$

Remark. It is essential to consider the geometric structure from Cartan's viewpoint. The first structure equations in Riemannian geometry is restricted to be torsion-free condition. Then the structure equations are reduced to

$$
\left\{\begin{array}{l}
\mathbf{d} \vartheta^{\hat{a}}=-\omega^{\hat{a}} \wedge \vartheta^{\hat{b}}=+\vartheta^{\hat{b}} \wedge \omega^{\hat{a}}{ }_{\hat{b}} \tag{304a}\\
\mathcal{R}_{\hat{b}}^{\hat{a}}=\mathbf{d} \omega_{\hat{b}}^{\hat{a}}+\omega^{\hat{a}}{ }_{\hat{c}} \wedge \omega_{\hat{b}}^{\hat{b}}
\end{array}\right.
$$

Because of metric compatibility, we have $\omega^{\hat{a}} \hat{b}_{\hat{b}}=-\omega^{\hat{b}}{ }_{\hat{a}}$ (or $\omega_{\hat{a} \hat{b}}=-\omega_{\hat{b} \hat{a}}$ in pseudo-Riemannian geometry), which gives

$$
\begin{equation*}
\omega^{\hat{a}}{ }_{\hat{b}}=\omega^{\hat{a}}{ }_{\hat{b} \hat{c}} \vartheta^{\hat{c}}=-\omega^{\hat{b}}{ }_{\hat{a}}=-\omega^{\hat{b}} \hat{a} \hat{c} \vartheta^{\hat{c}} \quad \Longrightarrow \quad \omega^{\hat{a}}{ }_{\hat{b} \hat{c}}=-\omega^{\hat{b}}{ }_{\hat{a} \hat{c}} . \tag{305}
\end{equation*}
$$

Due to (304a), we obtain

$$
\begin{equation*}
\mathbf{d} \vartheta^{\hat{a}}=\vartheta^{\hat{b}} \wedge \omega^{\hat{a}}{ }_{\hat{b}}=\omega^{\hat{a}}{ }_{\hat{b} \hat{c}} \vartheta^{\hat{b}} \wedge \vartheta^{\hat{c}}=\frac{1}{2}\left(\omega^{\hat{a}}{ }_{\hat{b} \hat{c}}-\omega^{\hat{a}}{ }_{\hat{c} \hat{b}}\right) \vartheta^{\hat{b}} \wedge \vartheta^{\hat{c}} . \tag{306}
\end{equation*}
$$

However, $\mathbf{d} \vartheta^{\hat{a}}$ is a 2 -form, it can be written as

$$
\begin{equation*}
\mathbf{d} \vartheta^{\hat{a}}=\frac{1}{2} a^{\hat{a}}{ }_{\hat{b} \hat{c}} \vartheta^{\hat{b}} \wedge \vartheta^{\hat{c}}, \tag{307}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
a^{\hat{a}_{\hat{b} \hat{c}}}=\omega^{\hat{a}}{ }_{\hat{b} \hat{c}}-\omega^{\hat{a}}{ }_{\hat{b} \hat{b}} . \tag{308}
\end{equation*}
$$

By permutating the indices \hat{a}, \hat{b} and \hat{c}, we have the equation

$$
\begin{equation*}
a^{\hat{a}}{ }_{\hat{b} \hat{c}}+a^{\hat{b}}{ }_{\hat{c} \hat{a}}-a^{\hat{c}}{ }_{\hat{a} \hat{b}}=\omega^{\hat{a}}{ }_{\hat{b} \hat{c}}-\omega^{\hat{b}}{ }_{\hat{a} \hat{c}}=2 \omega^{\hat{a}}{ }_{\hat{b} \hat{c}} . \tag{309}
\end{equation*}
$$

The resulting connection coefficients are

$$
\begin{equation*}
\omega^{\hat{a}} \hat{b}_{\hat{c} \hat{c}}=\frac{1}{2}\left(a^{\hat{a}}{ }_{\hat{b} \hat{c}}+a_{\hat{c} \hat{a}}^{\hat{b}}-a_{\hat{a} \hat{b}}^{\hat{c}}\right) . \tag{310}
\end{equation*}
$$

It can be shown that

$$
\begin{equation*}
a^{\hat{a}}{ }_{\hat{b} \hat{c}}=-c^{\hat{a}}{ }_{\hat{b} \hat{c}} \tag{311}
\end{equation*}
$$

where $c^{\hat{a}}{ }_{\hat{b} \hat{c}}$ is called the structure constants or commutation coefficients, which is defined by the commutation relation of the anholonomic frame

$$
\begin{align*}
{\left[\mathbf{e}_{\hat{a}}, \mathbf{e}_{\hat{b}}\right] } & =\left[a_{\hat{a}}{ }^{a} \frac{\partial}{\partial x^{a}}, a_{\hat{b}}{ }^{b} \frac{\partial}{\partial x^{b}}\right] \\
& =a_{\hat{a}}{ }^{a} \frac{\partial}{\partial x^{a}}\left(a_{\hat{b}}{ }^{b} \frac{\partial}{\partial x^{b}}\right)-a_{\hat{b}}{ }^{b} \frac{\partial}{\partial x^{b}}\left(a_{\hat{a}}{ }^{a} \frac{\partial}{\partial x^{a}}\right) \\
& =a_{\hat{a}}{ }^{a} \frac{\partial}{\partial x^{a}}\left(a_{\hat{b}}{ }^{b}\right) \frac{\partial}{\partial x^{b}}-a_{\hat{b}}{ }^{b} \frac{\partial}{\partial x^{b}}\left(a_{\hat{a}}{ }^{a}\right) \frac{\partial}{\partial x^{a}} \\
& =a_{\hat{a}}{ }^{a} \frac{\partial}{\partial x^{a}}\left(a_{\hat{b}}{ }^{b}\right) a^{\hat{c}}{ }_{b} \mathbf{e}_{\hat{c}}-a_{\hat{b}}{ }^{b} \frac{\partial}{\partial x^{b}}\left(a_{\hat{a}}{ }^{a}\right) a^{\hat{c}}{ }_{a} \mathbf{e}_{\hat{c}} \\
& =\left[a_{\hat{a}}{ }^{a} \frac{\partial}{\partial x^{a}}\left(a_{\hat{b}}{ }^{b}\right) a^{\hat{c}}{ }_{b}-a_{\hat{b}}{ }^{b} \frac{\partial}{\partial x^{b}}\left(a_{\hat{a}}{ }^{a}\right) a^{\hat{c}}{ }_{a}\right] \mathbf{e}_{\hat{c}} \\
& =\left[\mathbf{e}_{\hat{a}}\left(a_{\hat{b}}{ }^{b}\right) a^{\hat{c}}{ }_{b}-\mathbf{e}_{\hat{b}}\left(a_{\hat{a}}{ }^{a}\right) a^{\hat{c}}{ }_{a}\right] \mathbf{e}_{\hat{c}}:=c^{\hat{c}} \hat{a} \hat{b} \mathbf{e}_{\hat{c}} . \tag{312}
\end{align*}
$$

Here the anholonomic frame \mathbf{e}_{a} is identified as the so-called Pfaffian derivative. As a result, we obtain the the structure constants

$$
\begin{equation*}
c^{\hat{c}}{ }_{\hat{a} \hat{b}}:=\mathbf{e}_{\hat{a}}\left(a_{\hat{b}}{ }^{b}\right) a^{\hat{c}}{ }_{b}-\mathbf{e}_{\hat{b}}\left(a_{\hat{a}}{ }^{a}\right) a^{\hat{c}}{ }_{a} \tag{313}
\end{equation*}
$$

We note that it is apparent that the commutator

$$
\begin{equation*}
\left[\partial_{a}, \partial_{b}\right]=0 \tag{314}
\end{equation*}
$$

because two partial derivatives can be interchanged. As a result, we conclude that there is no structure constants in holonomic frame. Therefore, the commutation coefficients can also be called anholonomity which characterizes the property of the anholonomic frame. On the other hand,

$$
\begin{align*}
\mathbf{d} \vartheta^{\hat{c}} & =\mathbf{d}\left(a^{\hat{c}}{ }_{b} d x^{b}\right) \\
& =d\left(a^{\hat{c}}{ }_{b}\right) d x^{b} \\
& =\left(\frac{\partial}{\partial x^{a}} a^{\hat{c}}{ }_{b}\right) d x^{a} \wedge d x^{b} \\
& =\frac{1}{2}\left(\frac{\partial}{\partial x^{a}} a^{\hat{c}}{ }_{b}-\frac{\partial}{\partial x^{b}} a^{\hat{c}}{ }_{a}\right)\left(a_{\hat{a}}{ }^{a} \vartheta^{\hat{a}}\right) \wedge\left(a_{\hat{b}} \vartheta^{\hat{b}}\right) \\
& =\frac{1}{2}\left(a_{\hat{b}}{ }^{b} a_{\hat{a}}{ }^{a} \frac{\partial}{\partial x^{a}} a^{\hat{c}}{ }_{b}-a_{\hat{a}}{ }^{a} a_{\hat{b}}{ }^{b} \frac{\partial}{\partial x^{b}} a^{\hat{c}}{ }_{a}\right) \vartheta^{\hat{a}} \wedge \vartheta^{\hat{b}} \\
& =\frac{1}{2}\left(a_{\hat{b}}{ }^{b} \mathbf{e}_{\hat{a}}\left(a^{\hat{c}}{ }_{b}\right)-a_{\hat{a}}{ }^{a} \mathbf{e}_{\hat{b}}\left(a^{\hat{c}}{ }_{a}\right)\right) \vartheta^{\hat{a}} \wedge \vartheta^{\hat{b}} \\
& =-\frac{1}{2}\left(a^{\hat{c}}{ }_{b} \mathbf{e}_{\hat{a}}\left(a_{\hat{b}}{ }^{b}\right)-a^{\hat{c}}{ }_{a} \mathbf{e}_{\hat{b}}\left(a_{\hat{a}}{ }^{a}\right)\right) \vartheta^{\hat{a}} \wedge \vartheta^{\hat{b}} \\
& =-\frac{1}{2} c^{\hat{c}}{ }_{\hat{a} \hat{b}} \vartheta^{\hat{a}} \wedge \vartheta^{\hat{b}}, \tag{315}
\end{align*}
$$

where we have used $a_{\hat{b}}{ }^{b} \mathbf{e}_{\hat{a}}\left(a^{\hat{c}}{ }_{b}\right)=-a^{\hat{c}}{ }_{b} \mathbf{e}_{\hat{a}}\left(a_{\hat{b}}{ }^{b}\right)$ due to $a_{\hat{b}}{ }^{b} a^{\hat{c}}{ }_{b}=\delta_{\hat{b}}^{\hat{c}}$. The above result proves (311) and finally we obtain the linear connection coefficients

$$
\begin{equation*}
\omega^{\hat{a}}{ }_{\hat{b} \hat{c}}=-\frac{1}{2}\left(c^{\hat{a}}{ }_{\hat{b} \hat{c}}+c^{\hat{b}}{ }_{\hat{c} \hat{a}}-c^{\hat{c}}{ }_{\hat{a} \hat{b}}\right) \tag{316}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega^{\hat{a}_{\hat{b}}}{ }_{\hat{c}}=-\frac{1}{2}\left(c^{\hat{a}}{ }_{\hat{b} \hat{c}}-c_{\hat{b}}^{\hat{a}}{ }_{\hat{c}}-c_{\hat{c}}{ }_{\hat{a}}^{\hat{b}}\right) \quad \text { (in pseudo-Riemannian geometry). } \tag{317}
\end{equation*}
$$

Supplement (Covariant derivative in anholonomic frame). We can do the calculation in both holonomic and anholonomic frame. However, according to (251), we have

$$
\begin{align*}
D_{\hat{j}} D_{\hat{k}} \mathbf{e}_{\hat{i}}= & a_{\hat{j}}{ }^{j} D_{j}\left(a_{\hat{k}}{ }^{k} D_{k} \mathbf{e}_{\hat{i}}\right) \\
= & a_{\hat{j}}{ }^{j} a_{\hat{k}}{ }^{k} D_{j} D_{k} \mathbf{e}_{\hat{i}}+a_{\hat{j}}^{j}\left(\partial_{j} a_{\hat{k}}^{k}\right)\left(D_{k} \mathbf{e}_{\hat{i}}\right) \\
= & a_{\hat{j}}{ }^{j} a_{\hat{k}}{ }^{k} D_{j} D_{k}\left(a_{\hat{i}}{ }^{i} \mathbf{p}_{i}\right)+a^{\hat{l}}{ }_{k}\left(\mathbf{e}_{\hat{j}} a_{\hat{k}}^{k}\right)\left(D_{\hat{l}} \mathbf{e}_{\hat{i}}\right) \\
= & a_{\hat{j}}{ }^{j} a_{\hat{k}}{ }^{k} D_{j}\left(a_{\hat{i}}{ }^{i} D_{k} \mathbf{p}_{i}+\left(\partial_{k} a_{\hat{i}}{ }^{i}\right) \mathbf{p}_{i}\right)+a_{k}^{l}\left(\mathbf{e}_{\hat{j}} a_{\hat{k}}{ }^{k}\right)\left(D_{\hat{l}} \mathbf{e}_{\hat{i}}\right) \\
= & a_{\hat{j}}{ }^{j} a_{\hat{k}}{ }^{k}\left(a_{\hat{i}}{ }^{i} D_{j} D_{k} \mathbf{p}_{i}+\left(\partial_{j} a_{\hat{i}}{ }^{i}\right) D_{k} \mathbf{p}_{i}+\left(\partial_{k} a_{\hat{i}}{ }^{i}\right) D_{j} \mathbf{p}_{i}+\left(\partial_{j} \partial_{k} a_{\hat{i}}{ }^{i}\right) \mathbf{p}_{i}\right) \\
& +a_{k}^{\hat{l}} k\left(\mathbf{e}_{\hat{j}} a_{\hat{k}}{ }^{k}\right)\left(D_{\hat{l}} \mathbf{e}_{\hat{i}}\right) . \tag{318}
\end{align*}
$$

So we can find

$$
\begin{equation*}
\left(D_{\hat{j}} D_{\hat{k}}-D_{\hat{k}} D_{\hat{j}}\right) \mathbf{e}_{\hat{i}}=a_{\hat{i}}^{i} a_{\hat{j}}^{j} a_{\hat{k}}^{k}\left(D_{j} D_{k}-D_{k} D_{j}\right) \mathbf{p}_{i}+\left(a_{k}^{\hat{l}}\left(\mathbf{e}_{\hat{j}} a_{\hat{k}}^{k}\right)-a_{k}^{\hat{i}}\left(\mathbf{e}_{\hat{k}} a_{\hat{j}}^{k}\right)\right)\left(D_{\hat{l}} \mathbf{e}_{\hat{i}}\right) . \tag{319}
\end{equation*}
$$

Here we move the last term of (319) to the left-handed side and use the structure constants $c^{\hat{l}}{ }_{\hat{j} \hat{k}}$ defined by (313). Then, we also use (190) and (312) to obtain the equation

$$
\begin{align*}
a_{\hat{i}}{ }^{i} a_{\hat{j}}^{j} a_{\hat{k}}^{k}\left(D_{j} D_{k}-D_{k} D_{j}\right) \mathbf{p}_{i} & =\left(D_{\hat{j}} D_{\hat{k}}-D_{\hat{k}} D_{\hat{j}}-c^{\hat{l}}{ }_{\hat{j} \hat{k}} D_{\hat{l}}\right) \mathbf{e}_{\hat{i}} \\
& =\left(D_{\hat{j}} D_{\hat{k}}-D_{\hat{k}} D_{\hat{j}}-D_{c_{\hat{i}}^{\hat{l}} \mathbf{e}_{\hat{k}} \mathbf{e}_{i}}\right) \mathbf{e}_{\hat{i}} \\
& =\left(D_{\hat{j}} D_{\hat{k}}-D_{\hat{k}} D_{\hat{j}}-D_{\left[\mathbf{e}_{j}, \mathbf{e}_{\hat{k}}\right]}\right] \mathbf{e}_{i} . \tag{320}
\end{align*}
$$

It gives the general formula of curvature tensor

$$
\left\{\begin{align*}
\text { Holonomic frame: } & R_{i j k}^{l}{ }_{i j k} \mathbf{p}_{l}=(D_{j} D_{k}-D_{k} D_{j}-\underbrace{0}_{D_{\left[\partial_{j}, \partial_{k}\right]}=0 \text { which is vanished due to (314). }}) \mathbf{p}_{i}, \tag{321a}\\
\text { Anholonomic frame: } & R^{\hat{l} \hat{i} \hat{j} \hat{k}} \mathbf{e}_{\hat{l}}=\left(D_{\hat{j}} D_{\hat{k}}-D_{\hat{k}} D_{\hat{j}}-D_{\left[\mathbf{e}_{\hat{j}}, \mathbf{e}_{\hat{k}}\right]}\right) \mathbf{e}_{\hat{i}} .
\end{align*}\right.
$$

Therefore, one can consider three vectors $X=X^{\hat{j}} \mathbf{e}_{j}, Y=Y^{\hat{k}} \mathbf{e}_{\hat{k}}$ and $Z=Z^{\hat{i}} \mathbf{e}_{\hat{i}}$, then it can be shown that the frame independent formula of curvature tensor is

$$
\begin{equation*}
X^{\hat{j}} Y^{\hat{k}} Z^{\hat{i}} R_{\hat{i} \hat{j} \hat{k}}^{\hat{l}} \mathbf{e}_{\hat{l}}=\left(D_{X} D_{Y}-D_{Y} D_{X}-D_{[X, Y]}\right) Z:=R(X, Y) Z . \tag{322}
\end{equation*}
$$

After the calculation, (321) can be written in terms of the connections and structure constants

$$
\left\{\begin{array}{rl}
\text { Holonomic: } & R_{i j k}^{l}=\partial_{j} \Gamma_{i k}^{l}-\partial_{k} \Gamma_{i j}^{l}+\Gamma_{m j}^{l} \Gamma^{m}{ }_{i k}-\Gamma_{m k}^{l} \Gamma^{m}{ }_{i j}, \tag{323a}\\
\text { Anholonomic: } & R^{\hat{l}_{\hat{i} \hat{k}}}=\mathbf{e}_{j} \omega^{\hat{l}}{ }_{\hat{i} \hat{k}}-\mathbf{e}_{\hat{k}} \omega^{\hat{i}} \hat{i} \hat{j}
\end{array}+\omega_{\hat{m} \hat{j}}^{\hat{\jmath}} \omega^{\hat{m}}{ }_{\hat{i} \hat{k}}-\omega_{\hat{m} \hat{k}}^{\hat{l}} \omega^{\hat{m}}{ }_{\hat{i} \hat{j}}-\omega^{\hat{i} \hat{i} \hat{m}} c^{\hat{m}}{ }_{\hat{j} \hat{k}} .\right.
$$

Finally (320) gives the transformation formula for curvature tensor by substituting $\mathbf{p}_{l}=a_{l}^{\hat{l}} \mathbf{e}_{\hat{l}}$ to the left-handed side of (320)

$$
\begin{equation*}
R_{\hat{i} \hat{j} \hat{k}}^{\hat{l}}=a_{l}^{\hat{l}} a_{\hat{i}}^{i} a_{\hat{j}}^{j} a_{\hat{k}}^{k} R_{i j k}^{l} . \tag{324}
\end{equation*}
$$

Similarly, it can be shown that by computing the commutator of the covariant derivatives on function f, i.e., $\left(D_{\hat{j}} D_{\hat{k}}-D_{\hat{k}} D_{\hat{j}}\right) f$, we obtain the following equations

$$
\left\{\begin{align*}
\text { Holonomic frame: } & T^{i}{ }_{j k} D_{i} f=T_{j k}^{i} \partial_{i} f=\left(D_{j} D_{k}-D_{k} D_{j}\right) f, \tag{325a}\\
\text { Anholonomic frame: } & T^{\hat{i}}{ }_{j \hat{k}} D_{\hat{i}} f=T^{\hat{i}}{ }_{\hat{j} \hat{k}} \mathbf{e}_{\hat{i}} f=\left(D_{\hat{j}} D_{\hat{k}}-D_{\hat{k}} D_{\hat{j}}-\left[\mathbf{e}_{\hat{j}}, \mathbf{e}_{\hat{k}}\right]\right) f,
\end{align*}\right.
$$

and the frame independent formula of torsion tensor is given by vectors $X=X^{\hat{j}} \mathbf{e}_{\hat{j}}$ and $Y=Y^{\hat{k}} \mathbf{e}_{\hat{k}}$ with $\mathbf{e}_{\hat{i}}:=D_{\hat{i}} f$ of

$$
\begin{equation*}
X^{\hat{j}} Y^{\hat{k}} T^{\hat{i}}{ }_{\hat{j} \hat{k}} \mathbf{e}_{\hat{i}}=D_{X} Y-D_{Y} X-[X, Y]:=T(X, Y) . \tag{326}
\end{equation*}
$$

In terms of the connections and structure constants, (325) can be written as

$$
\left\{\begin{align*}
\text { Holonomic: } & T^{i}{ }_{j k}=\Gamma^{i}{ }_{k j}-\Gamma^{i}{ }_{j k}, \tag{327a}\\
\text { Anholonomic: } & T^{\hat{i}}{ }_{\hat{j} \hat{k}}=\omega^{\hat{i}}{ }_{\hat{k} \hat{j}}-\omega^{\hat{i}}{ }_{\hat{j} \hat{k}}-c^{\hat{i}}{ }_{\hat{j} \hat{k}} .
\end{align*}\right.
$$

Here we note that a vector X act on a function f and a avector Y are respectively given by

$$
\begin{equation*}
X(f)=X^{\hat{j}} \mathbf{e}_{\hat{j}}(f) \text { and } X(Y)=X^{\hat{j}} \mathbf{e}_{\hat{j}}\left(Y^{\hat{k}}\right) \mathbf{e}_{\hat{k}}+X^{\hat{j}} Y^{\hat{k}} \mathbf{e}_{\mathbf{e}^{\prime}} \mathbf{e}_{\hat{k}} . \tag{328}
\end{equation*}
$$

In addition, the transformation formula for torsion tensor should be

$$
\begin{equation*}
T^{\hat{i}}{ }_{\hat{j} \hat{k}}=a^{\hat{i}}{ }_{i} a_{\hat{j}}^{j} a_{\hat{k}}{ }^{k} T^{i}{ }_{j k} . \tag{329}
\end{equation*}
$$

Non-fixed frame and gauge transformation For general space \mathcal{M}^{n}, the vector $\boldsymbol{V}=V^{a} \boldsymbol{E}_{a}(a=$ $1, \ldots, n$) under local coordinate X^{a} can be spanned by a non-fixed holonomic frame $\boldsymbol{E}_{a}:=\frac{\partial}{\partial X^{a}}$ with $d \boldsymbol{E}_{a} \neq 0$. The vector \boldsymbol{E}_{a} can be spanned by another set of anholonomic frame $\mathbf{e}_{\hat{b}}$ given by a $G L(n, \mathbb{R})$ transformation

$$
\begin{equation*}
\boldsymbol{E}_{a}=A^{\hat{b}}{ }_{a} \mathbf{e}_{\hat{b}} \quad \text { with } \quad A^{\hat{b}}{ }_{a} \in G L(n, \mathbb{R}), \tag{330}
\end{equation*}
$$

and we also have coframe

$$
\begin{equation*}
d X^{a}=A_{\hat{b}}^{a} \vartheta^{\hat{b}} \tag{331}
\end{equation*}
$$

where we have defined the inverse

$$
\begin{equation*}
A_{\hat{b}}{ }^{a}:=\left(A^{-1}\right)^{\hat{b}}{ }_{a} . \tag{332}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
d \boldsymbol{V}=d V^{a} \boldsymbol{E}_{a}+V^{a} d \boldsymbol{E}_{a} \tag{333}
\end{equation*}
$$

and we have to introduce the connection form $\Gamma^{b}{ }_{a}$ and $\omega^{\hat{b}}{ }_{\hat{a}}$ for the frame \boldsymbol{E}_{a} and $\mathbf{e}_{\hat{a}}$ respectively, which gives

$$
\left\{\begin{align*}
d \boldsymbol{E}_{a} & =\Gamma_{a}^{b}{ }_{a} \boldsymbol{E}_{b}, \tag{334a}\\
d \mathbf{e}_{\hat{a}} & =\omega^{\hat{b}}{ }_{\hat{a}} \mathbf{e}_{\hat{b}} .
\end{align*}\right.
$$

The differential of \boldsymbol{V} can also be expressed as

$$
\begin{equation*}
d \boldsymbol{V}=d V^{a} \boldsymbol{E}_{a}+V^{a} \Gamma^{b}{ }_{a} \boldsymbol{E}_{b}=\left(d V^{a}+V^{b} \Gamma^{a}{ }_{b}\right) \boldsymbol{E}_{a}:=(\bar{D} \boldsymbol{V})^{a} \boldsymbol{E}_{a} . \tag{335}
\end{equation*}
$$

Remark. We note that there is no normal space $\mathcal{M}^{n \perp}$ of \mathcal{M}^{n}, therefore, we obtain

$$
\begin{equation*}
d \boldsymbol{V}=(d \boldsymbol{V})^{\top}=\bar{D} \boldsymbol{V} \tag{336}
\end{equation*}
$$

where the connection \bar{D} is defined with respect to basis \boldsymbol{E}_{a}. As a result, the differetial operator d also represents the covariant derivative \bar{D} on general space \mathcal{M}^{n}.

On the other hand, the differetial

$$
\begin{equation*}
d \boldsymbol{E}_{a}=d A^{\hat{b}}{ }_{a} \mathbf{e}_{\hat{b}}+A^{\hat{b}}{ }_{a} d \mathbf{e}_{\hat{b}}=d A^{\hat{b}}{ }_{a} \mathbf{e}_{\hat{b}}+A^{\hat{b}}{ }_{a} \omega^{\hat{c}}{ }_{\hat{b}} \mathbf{e}_{\hat{c}}=\left(d A^{\hat{b}}{ }_{a}+A^{\hat{c}}{ }_{a} \omega^{\hat{b}} \hat{\hat{c}}\right) \mathbf{e}_{\hat{b}} . \tag{337}
\end{equation*}
$$

From (330) and (334a), it implies the relation between two connection forms

$$
\begin{equation*}
\Gamma^{c}{ }_{a} \boldsymbol{E}_{c}=\Gamma^{c}{ }_{a} A^{\hat{b}}{ }_{c} \mathbf{e}_{\hat{b}}=\left(d A^{b}{ }_{a}+A^{\hat{c}}{ }_{a} \omega^{\hat{b}}{ }_{\hat{c}}\right) \mathbf{e}_{\hat{b}} \quad \Longrightarrow \quad \Gamma^{c}{ }_{a}=A_{\hat{b}}{ }^{c}\left(d A_{a}^{\hat{b}}+\omega^{\hat{b}} A^{\hat{c}}{ }_{a}\right), \tag{338}
\end{equation*}
$$

which is a frame transformation or $G L(n, \mathbb{R})$ gauge transformation of the connection form.
Remark. We note that the relation (338) comes from the frame transformation or $G L(n, \mathbb{R})$ gauge transformation, rather than metric compatibility. This relation is sometimes called vielbein postulate. However, the equation is still valid even if the frame $\mathbf{e}_{\hat{a}}$ is not orthonormal or the nonmetricity $Q_{a b c}=-\nabla_{a} g_{b c}$ is not vanished. In such case, the connection $\omega^{\hat{b}}{ }_{\hat{a}}$ contains the symmetric or trace part, i.e., $\omega_{(\hat{a} \hat{b})} \neq 0$ or $\omega^{\hat{a}}{ }_{a} \neq 0$. So it is improper to call the relation postulate. People always implicitly define a total connection $\boldsymbol{D}(\Gamma, \omega)$ of tensor with respect to both the holonomic and anholonomic basis of $\boldsymbol{E}_{a}, d X^{a}, \mathbf{e}_{\hat{a}}$ and $\vartheta^{\hat{a}}$. By giving a tensor $A:=A^{\hat{b}}{ }_{a} \mathbf{e}_{\hat{b}} \otimes d X^{a}$, the connection D act on A is

$$
\begin{align*}
\boldsymbol{D} A & =\boldsymbol{D}\left(A^{\hat{b}}{ }_{a} \mathbf{e}_{\hat{b}} \otimes d X^{a}\right) \\
& =\left(d A^{\hat{b}}{ }_{\hat{a}}\right) \mathbf{e}_{\hat{b}} \otimes d X^{\hat{a}}+A^{\hat{b}}{ }_{a}\left(\boldsymbol{D} \mathbf{e}_{\hat{b}}\right) \otimes d X^{a}+A^{\hat{b}}{ }_{a} \mathbf{e}_{\hat{b}} \otimes\left(\boldsymbol{D} d X^{a}\right) \\
& =\left(d A^{\hat{b}}{ }_{a}\right) \mathbf{e}_{\hat{b}} \otimes d X^{a}+A^{\hat{b}}{ }_{a}\left(\omega^{\hat{c}} \mathbf{e}_{\hat{b}}\right) \otimes d X^{a}+A^{\hat{b}}{ }_{a} \mathbf{e}_{\hat{b}} \otimes\left(-\Gamma^{a}{ }_{c} d X^{c}\right) \\
& =\left(d A^{\hat{b}}{ }_{a}+A^{\hat{c}}{ }_{a} \omega^{\hat{b}}{ }_{\hat{c}}-A^{\hat{b}}{ }_{c} \Gamma^{c}{ }_{a}\right) \mathbf{e}_{\hat{b}} \otimes d X^{a}=0 \tag{339}
\end{align*}
$$

due to (338), which is independent of the metric compatibility. As a result, the component gives the vielbein postulate

$$
\begin{equation*}
(\boldsymbol{D} A)^{\hat{b}}{ }_{a}=d A^{\hat{b}}{ }_{a}+A^{\hat{c}}{ }_{a} \omega^{\hat{b}}{ }_{\hat{c}}-A^{\hat{b}}{ }_{c} \Gamma^{c}{ }_{a}=0 \tag{340}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla_{d} A^{\hat{b}}{ }_{a}=\partial_{d} A^{\hat{b}}{ }_{a}+A^{\hat{c}}{ }_{a} \omega^{\hat{b}}{ }_{\hat{c} d}-A^{\hat{b}}{ }_{c} \Gamma^{c}{ }_{a d}=0 \tag{341}
\end{equation*}
$$

Figure 10: Two points on the hypersurface \mathcal{M}^{n-1} in \mathcal{M}^{n}.
Now we will discuss the connection on the hypersurface \mathcal{M}^{n-1} of $\overline{\mathcal{M}}^{n}$. Consider a point \mathbf{p} on \mathcal{M}^{n-1} is identified by a vector \boldsymbol{V} in $\overline{\mathcal{M}}^{n}$. Simirlarly, a point \mathbf{q} on \mathcal{M}^{n-1} is represented by \boldsymbol{V}^{\prime} in $\overline{\mathcal{M}}^{n}$. Here we only focus on the connection on \mathcal{M}^{n-1}, we have restricted our case that $d \boldsymbol{V}=\mathbf{q}-\mathbf{p}=$ $\boldsymbol{V}^{\prime}-\boldsymbol{V}$ lays on the hypersurface \mathcal{M}^{n-1} only. So $d \boldsymbol{V}$ can be expanded not only by frame $\boldsymbol{E}_{a}=\frac{\partial}{\partial X^{a}}$ $(a=1, \ldots, n)$ on $\overline{\mathcal{M}}^{n}$ but also by frame $\partial_{i}=\frac{\partial}{\partial u^{i}}(i=1, \ldots, n-1)$ on \mathcal{M}^{n-1}.

Remark. We can consider the case of $n=3$ and two infinitesimal closed points \mathbf{q} and \mathbf{p} with the spherical coordinate $X^{a}=(r, \theta, \phi)$ in $\overline{\mathcal{M}}^{3}$ and polar coordinate $u^{i}=(\rho, \varphi)$ in \mathcal{M}^{2}. Therefore \boldsymbol{E}_{a} and ∂_{i} are non-fixed frames.

The differential $d V^{a}$ can be given by

$$
\begin{equation*}
d V^{a}=\frac{\partial V^{a}}{\partial u} d u+\frac{\partial V^{a}}{\partial v} d v=\partial_{i} V^{a} d u^{i}, \tag{342}
\end{equation*}
$$

then all the n-dimensional vectors can be expanded by $(n-1)$-dimensional ones, the resulting equation of (335) would be rewritten as

$$
\begin{align*}
d \boldsymbol{V} & =(\bar{D} \boldsymbol{V})^{a} \boldsymbol{E}_{a} \\
& =\left(\partial_{i} V^{a} d u^{i}+V^{b} \Gamma^{a}{ }_{b c} d X^{c}\right) \boldsymbol{E}_{a} \\
& =(\partial_{i} V^{a} d u^{i}+V^{b} \Gamma^{a}{ }_{b c} \underbrace{\frac{\partial X^{c}}{\partial u^{i}}}_{h^{c}{ }_{i}} d u^{i}) \boldsymbol{E}_{a} \\
& =\left(\partial_{i} V^{a}+V^{b} \Gamma^{a}{ }_{b c} h^{c}{ }_{i}\right) d u^{i} \boldsymbol{E}_{a}:=V_{i}^{a} d u^{i} \boldsymbol{E}_{a} . \tag{343}
\end{align*}
$$

Here we define

$$
\begin{equation*}
\boldsymbol{V}_{i}:=V_{i}^{a} \boldsymbol{E}_{a}=\left(\partial_{i} V^{a}+V^{b} \Gamma^{a}{ }_{b c} h^{c}{ }_{i}\right) \boldsymbol{E}_{a} . \tag{344}
\end{equation*}
$$

Remark. The result of (66) in \mathbb{E}^{3} can be reduced from (335) by

$$
\left\{\begin{align*}
\overline{\mathcal{M}}^{n} & \longrightarrow \mathbb{E}^{3} \tag{345}\\
V^{a} & \longrightarrow p^{a}=x^{a}, \\
\boldsymbol{E}_{a} & \longrightarrow \delta_{a}, \\
\Gamma^{a}{ }_{b} & \longrightarrow 0, \\
(\bar{D} \boldsymbol{V})^{a} & \longrightarrow d x^{a} .
\end{align*}\right.
$$

Due to (334a) and (338), we have

$$
\begin{equation*}
0=d \delta_{a}=d A^{\hat{b}}{ }_{a} \mathbf{e}_{\hat{b}}+A^{\hat{b}}{ }_{a} \omega^{\hat{c}}{ }_{\hat{b}} \mathbf{e}_{\hat{c}}=\left(d A^{\hat{b}}{ }_{a}+A^{\hat{c}}{ }_{a} \omega^{\hat{b}}{ }_{\hat{c}}\right) \mathbf{e}_{\hat{b}} . \tag{346}
\end{equation*}
$$

As a consequence, the connection form $\omega^{\hat{b}}{ }_{\hat{c}}$ is obtained by

$$
\begin{equation*}
\omega^{\hat{b}}{ }_{\hat{c}}=-A_{\hat{c}}{ }^{a} d A^{\hat{b}}{ }_{a}=+A^{\hat{b}}{ }_{a} d A_{\hat{c}}{ }^{a} . \tag{347}
\end{equation*}
$$

In addition, within (345), (343) becomes as

$$
\begin{equation*}
d \mathbf{p}=(\partial_{i} x^{a}+x^{b} \underbrace{\Gamma_{b c}^{a}}_{0} h^{c}{ }_{i}) d u^{i} \delta_{a}=\left(\partial_{i} x^{a}\right) d u^{i} \delta_{a}:=\partial_{i} \mathbf{p} d u^{i} . \tag{348}
\end{equation*}
$$

Therefore, (344) reduces to the derivative vector $\mathbf{p}_{i}:=\partial_{i} \mathbf{p}$ on the hypersurface \mathcal{M} of \mathbb{E}^{3} is

$$
\begin{equation*}
\mathbf{p}_{i}=\partial_{i} \mathbf{p}=\partial_{i} x^{a} \delta_{a}=\left(\partial_{i} x, \partial_{i} y, \partial_{i} z\right) \tag{349}
\end{equation*}
$$

Figure 11: Two vectors on the hypersurface \mathcal{M}^{n-1} in \mathcal{M}^{n}.

Induced connection However, if we move the reference point \boldsymbol{o} on the hypersurface \mathcal{M}^{n-1}, the vector $d \boldsymbol{V}$ should be regarded as the difference between \boldsymbol{V}^{\prime} and \boldsymbol{V} on \mathcal{M}^{n-1} and is equivalent to $D \boldsymbol{V}$ with respect to the basis $\frac{\partial}{\partial u^{i}}$ as shown in Fig. 11. Then, we have

$$
\begin{align*}
d \boldsymbol{V}=D \boldsymbol{V} & =D\left(V^{k} \frac{\partial}{\partial u^{k}}\right) \\
& =\left(\partial_{i} V^{k}+V^{l} \Gamma^{k}{ }_{l i}\right) d u^{i} \frac{\partial}{\partial u^{k}} . \tag{350}
\end{align*}
$$

By using chain rule to expand \boldsymbol{E}_{a} in terms of $\frac{\partial}{\partial u^{k}}$

$$
\begin{equation*}
\boldsymbol{E}_{a}=\frac{\partial}{\partial X^{a}}=\underbrace{\frac{\partial u^{k}}{\partial X^{a}}}_{h_{a} k} \frac{\partial}{\partial u^{k}}=h_{a}^{k} \frac{\partial}{\partial u^{k}} \tag{351}
\end{equation*}
$$

and substituting the relation into (343), we have

$$
d \boldsymbol{V}=\left(\partial_{i} V^{a}+V^{b} \Gamma^{a}{ }_{b c} h^{c}{ }_{i}\right) d u^{i}\left(h_{a}{ }^{k} \frac{\partial}{\partial u^{k}}\right)
$$

$$
\begin{align*}
& =(\partial_{i}(V^{j} \underbrace{\frac{\partial X^{a}}{\partial u^{j}}}_{h^{a}{ }_{j}}) h_{a}{ }^{k}+V^{l} \underbrace{\frac{\partial X^{b}}{\partial u^{l}}}_{h^{b}{ }_{l}} \Gamma^{a}{ }_{b c} h^{c}{ }_{i} h_{a}{ }^{k}) d u^{i} \frac{\partial}{\partial u^{k}} \\
& =(\left(\partial_{i} V^{j}\right) \underbrace{h^{a}{ }_{j} h_{a}{ }^{k}}_{\delta_{j}^{k}}+V^{l}\left(\left(\partial_{i} h^{a}{ }_{l}\right) h_{a}{ }^{k}+h^{b}{ }_{l} \Gamma^{a}{ }_{b c} h^{c}{ }_{i} h_{a}{ }^{k}\right)) d u^{i} \frac{\partial}{\partial u^{k}} \\
& =\left(\left(\partial_{i} V^{k}\right)+V^{l}\left(\left(\partial_{i} h^{a}{ }_{l}\right) h_{a}{ }^{k}+h^{b}{ }_{l} \Gamma^{a}{ }_{b c} h^{c}{ }_{i} h_{a}{ }^{k}\right)\right) d u^{i} \frac{\partial}{\partial u^{k}} . \tag{352}
\end{align*}
$$

Now we compare (350) and (352), the induced connection $\Gamma^{k}{ }_{l i}$ on hypersurface \mathcal{M}^{n-1} can be obtained from the connection $\Gamma^{a}{ }_{b c}$ on $\overline{\mathcal{M}}^{n}$ through the projection $h_{a}{ }^{k}$

$$
\begin{equation*}
\Gamma^{k}{ }_{l i}=\left(\partial_{i} h^{a}{ }_{l}\right) h_{a}{ }^{k}+h^{b}{ }_{l} \Gamma^{a}{ }_{b c} h^{c}{ }_{i} h_{a}{ }^{k} . \tag{353}
\end{equation*}
$$

We note that the discussion above can be generalized to the case for arbitrary frame (including fixed and non-fixed frame).

Curvature and torsion in subspace Now we would like to consider an n-dimensional space \mathcal{M} embedded in a m-dimensional space $\overline{\mathcal{M}}$. We consider a so-called Darboux frame of \mathcal{M}. We label the components by indices $\hat{a}, \hat{b}, \hat{c}=\hat{1}, \ldots, \hat{m}$ on $\overline{\mathcal{M}}$ the indices $\hat{i}, \hat{j}, \hat{k}=\hat{1}, \ldots, \hat{n}$ on \mathcal{M}, and the indices $p, q, r=\hat{n}+\hat{1}, \ldots, \hat{m}$ on the normal space \mathcal{M}^{\perp} of \mathcal{M} in the orthonormal frame. We define the geometric objects on $\overline{\mathcal{M}}$ specified by barred symbols. The frame $\overline{\mathbf{e}}_{\hat{a}}$ is extended by the vector $\mathbf{e}_{\hat{i}}$ and $\mathbf{e}_{\hat{p}}$

$$
\begin{equation*}
\overline{\mathbf{e}}_{\hat{a}}=\delta_{\hat{a}}^{\hat{i}} \mathbf{e}_{\hat{i}}+\delta_{\hat{a}}^{\hat{p}} \mathbf{e}_{\hat{p}} \quad \longrightarrow \quad \overline{\boldsymbol{e}}:=\left(\overline{\mathbf{e}}_{\hat{a}}\right)=\binom{\mathbf{e}_{\hat{i}}}{\mathbf{e}_{\hat{p}}} . \tag{354}
\end{equation*}
$$

Similarly, we have

$$
\bar{\vartheta}^{\hat{a}}=\delta_{\hat{i}}^{\hat{a}} \vartheta^{\hat{i}}+\delta_{\hat{p}}^{\hat{a}} \vartheta^{\hat{p}} \quad \longrightarrow \quad \overline{\boldsymbol{\vartheta}}:=\left(\begin{array}{ll}
\bar{\vartheta}^{\hat{a}}
\end{array}\right)=\left(\begin{array}{ll}
\vartheta^{\hat{i}} & \vartheta^{\hat{p}} \tag{355}
\end{array}\right) .
$$

Therefore, the components of $\left\{\overline{\mathbf{e}}_{\hat{a}}\right\}$ and $\left\{\bar{\vartheta}^{\hat{a}}\right\}$ are $\overline{\mathbf{e}}_{\hat{i}}=\mathbf{e}_{\hat{i}}, \overline{\mathbf{e}}_{\hat{p}}=\mathbf{e}_{\hat{p}}, \overline{\vartheta^{\hat{i}}}=\vartheta^{\hat{i}}$ and $\overline{\vartheta^{\hat{p}}}=\vartheta^{\hat{p}}$. The metric is defined by the inner product of two vectors, we have the following relations

$$
\begin{equation*}
\bar{g}\left(\overline{\mathbf{e}}_{\hat{a}}, \overline{\mathbf{e}}_{\hat{b}}\right)=\delta_{\hat{a} \hat{b}}, \quad g\left(\mathbf{e}_{\hat{i}}, \mathbf{e}_{\hat{j}}\right)=\delta_{\hat{i} \hat{j}}, \quad g^{\perp}\left(\mathbf{e}_{\hat{p}}, \mathbf{e}_{\hat{q}}\right)=\delta_{\hat{p} \hat{q}}, \quad \bar{g}\left(\overline{\mathbf{e}}_{\hat{i}}, \overline{\mathbf{e}}_{\hat{p}}\right)=0, \tag{356}
\end{equation*}
$$

where \bar{g}, g and g^{\perp} are metrics of the manifolds $\overline{\mathcal{M}}, \mathcal{M}$ and \mathcal{M}^{\perp} respectively. Due to the metric compatible condition, we have $\bar{\omega}_{\hat{a}}=-\bar{\omega}_{\hat{b}}{ }_{\hat{b}}$ and

$$
\begin{equation*}
\bar{\omega}^{\hat{b}}{ }_{\hat{a}}=\delta_{\hat{j}}^{\hat{b}} \delta_{\hat{a}}^{\hat{i}} \omega^{\hat{j}}{ }_{\hat{i}}+\delta_{\hat{q}}^{\hat{b}} \delta_{\hat{a}}^{\hat{i}} \omega^{\hat{q}_{\hat{i}}}+\delta_{\hat{j}}^{\hat{b}} \delta_{\hat{a}}^{\hat{p}} \omega^{\hat{j}}{ }_{\hat{p}}+\delta_{\hat{q}}^{\hat{b}} \delta_{\hat{a}}^{\hat{p}} \omega^{\hat{q}}{ }_{\hat{p}}, \tag{357}
\end{equation*}
$$

which can also be recognized by the matrix as

$$
\boldsymbol{\omega}:=\left(\bar{\omega}^{\hat{b}_{\hat{a}}}\right)=\left(\begin{array}{cc}
\omega^{\hat{j}_{\hat{i}}} & \omega^{\hat{q}_{\hat{i}}} \tag{358}\\
\omega^{\hat{j}} & \omega^{\hat{p}}
\end{array}\right) .
$$

Now we will discuss the dynamics on subspace \mathcal{M} only. The differential of frame on \mathcal{M} are given by

$$
\left\{\begin{align*}
\mathbf{d}_{\nabla} \mathbf{p} & =\bar{\vartheta}^{\hat{a}} \overline{\mathbf{e}}_{\hat{a}} \quad \text { with } \quad \vartheta^{\hat{p}}=0 \tag{359a}\\
\mathbf{d}_{\nabla} \overline{\mathbf{e}}_{\hat{a}} & =\bar{\omega}^{\hat{\hat{b}}} \overline{\mathbf{e}}_{\hat{a}}
\end{align*}\right.
$$

or

In addition

$$
\begin{equation*}
\vartheta^{\hat{p}}=0 \quad \Longrightarrow \quad 0=\mathbf{D} \vartheta^{\hat{p}}=\mathbf{d} \underbrace{\vartheta^{\hat{p}}}_{0}+\omega^{\hat{p}_{\hat{i}}} \wedge \vartheta^{\hat{i}}+\omega^{\hat{p}} \hat{q}_{\hat{~}} \wedge \underbrace{\vartheta^{\hat{q}}}_{0}=\overline{\mathcal{T}}^{\hat{p}}, \tag{361}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\omega^{\hat{p}_{\hat{i}}} \wedge \vartheta^{\hat{i}}=0 . \tag{362}
\end{equation*}
$$

Applying the Cartan's lemma, we obtain the connection form

$$
\begin{equation*}
\omega^{\hat{p}_{\hat{i}}}=-\omega^{\hat{i}}{ }_{\hat{p}}=h^{\hat{p}_{\hat{i}}}{ }^{\vartheta^{\hat{j}}}, \tag{363}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega_{\hat{p} \hat{i}}=h_{\hat{p} \hat{i} \hat{\vartheta}} \vartheta^{\hat{j}} \quad \text { and } \quad \omega_{\hat{i} \hat{p}}=-\omega_{\hat{p} \hat{i}}=-h_{\hat{p} \hat{i} \hat{j}} \vartheta^{\hat{j}}=h_{\hat{i} \hat{p} \hat{j}} \vartheta^{\hat{j}} \quad \text { (in pseudo-Riemannian geometry). } \tag{364}
\end{equation*}
$$

Now we would like to calculate the differential of structure equations. The covarint exterior differentiation of first structure equation is obtained by

$$
\begin{align*}
& \mathbf{d}_{\nabla}^{2} \mathbf{p}=\mathbf{d}_{\nabla}\left(\bar{\vartheta}^{\hat{a}} \overline{\mathbf{e}}_{\hat{a}}\right)=\mathbf{d}_{\nabla}\left(\vartheta^{\hat{i}} \mathbf{e}_{i}+\vartheta^{\hat{p}} \mathbf{e}_{\hat{p}}\right) \\
& =\mathbf{d} \vartheta^{\hat{i}} \mathbf{e}_{\hat{i}}-\vartheta^{\hat{i}} \wedge \mathbf{d}_{\nabla} \mathbf{e}_{i}+\mathbf{d} \vartheta^{\hat{p}} \mathbf{e}_{\hat{p}}-\vartheta^{\hat{p}} \wedge \mathbf{d}_{\nabla} \mathbf{e}_{\hat{p}} \\
& =\mathbf{d} \vartheta^{\hat{i}} \mathbf{e}_{\hat{i}}-\vartheta^{\hat{i}} \wedge\left(\omega^{\hat{j}} \mathbf{e}_{\hat{i}}+\omega^{\hat{p}} \mathbf{e}_{\hat{i}}\right)+\mathbf{d} \vartheta^{\hat{p}} \mathbf{e}_{\hat{p}}-\vartheta^{\hat{p}} \wedge\left(\omega^{\hat{i}}{ }_{p} \mathbf{e}_{\hat{i}}+\omega^{\hat{q}}{ }_{\hat{p}} \mathbf{e}_{\hat{q}}\right) \\
& =\mathbf{d} \vartheta^{i} \mathbf{e}_{i}+\omega^{\hat{j}} \hat{i}_{\hat{i}} \wedge \vartheta^{\hat{i}} \mathbf{e}_{\hat{j}}+\omega^{\hat{p}}{ }_{\hat{i}} \wedge \vartheta^{\hat{i}} \mathbf{e}_{\hat{p}}+\mathbf{d} \vartheta^{\hat{p}} \mathbf{e}_{\hat{p}}+\omega^{\hat{i}}{ }_{\hat{p}} \wedge \vartheta^{\hat{p}} \mathbf{e}_{\hat{i}}+\omega^{\hat{q}}{ }_{\hat{p}} \wedge \vartheta^{\hat{p}} \mathbf{e}_{\hat{q}} \\
& =(\underbrace{\mathbf{d} \vartheta^{\hat{i}}+\omega^{\hat{i}} \wedge \vartheta^{\hat{i}}}_{\mathcal{T}^{\hat{i}}}+\omega^{\hat{i}} \hat{p} \wedge \vartheta^{\hat{p}}) \mathbf{e}_{\hat{i}}+(\underbrace{\mathbf{d} \vartheta^{\hat{p}}+\omega^{\hat{p}}}_{\mathcal{T}^{\hat{p}}} \wedge \vartheta^{\hat{q}}+\omega^{\hat{p}} \wedge \vartheta^{\hat{i}}) \mathbf{e}_{\hat{p}} \\
& =\overline{\mathcal{T}}^{\hat{a}} \overline{\mathbf{e}}_{\hat{a}}=\overline{\mathcal{T}}^{\hat{i}} \mathbf{e}_{\hat{i}}+\overline{\mathcal{T}}^{\hat{p}} \mathbf{e}_{\hat{p}} . \tag{365}
\end{align*}
$$

By using (361), we obtain

$$
\begin{equation*}
\mathbf{d}_{\nabla}^{2} \mathbf{p}=\overline{\mathcal{T}}^{\hat{i}} \mathbf{e}_{\hat{i}}=(\mathcal{T}^{\hat{i}}+\omega^{\hat{\hat{p}}} \hat{\hat{q}}^{\prime} \underbrace{\vartheta^{\hat{q}}}_{0}) \mathbf{e}_{\hat{i}}=\mathcal{T}^{\hat{i}} \mathbf{e}_{\hat{i}}, \tag{366}
\end{equation*}
$$

which leads to the equation

$$
\begin{equation*}
\overline{\mathcal{T}}^{\hat{i}}=\mathcal{T}^{\hat{i}} \tag{367}
\end{equation*}
$$

Remark. For case of \mathcal{M} is embedded in $\overline{\mathcal{M}}$, we have consquence of

$$
\begin{equation*}
\hat{\mathcal{T}}^{\hat{i}}=\mathcal{T}^{\hat{i}} \tag{368}
\end{equation*}
$$

It means that there is no extrinsic torsion contribution in the equation of torsion in embedding structure of geometry ($c f$. Gauss equation (372a)).

The covarint exterior differentiation of second structure equation is

$$
\begin{equation*}
\mathbf{d}_{\nabla}^{2} \overline{\mathbf{e}}_{\hat{a}}=\overline{\mathcal{R}}_{\hat{a}}^{\hat{a}} \overline{\mathbf{e}}_{\hat{a}}=\overline{\mathcal{R}}_{\hat{a}}^{\hat{j}} \mathbf{e}_{\hat{j}}+\overline{\mathcal{R}}_{\hat{\boldsymbol{a}}}^{\hat{p}} \mathbf{e}_{\hat{p}}, \tag{369}
\end{equation*}
$$

which can be calculated separately by $\mathbf{d}_{\nabla}^{2} \mathbf{e}_{\hat{i}}$ and $\mathbf{d}_{\nabla}^{2} \mathbf{e}_{\hat{p}}$. They are shown by

$$
\begin{aligned}
& \mathbf{d}_{\nabla}^{2} \mathbf{e}_{i}=\mathbf{d} \omega^{\hat{j}} \mathbf{e}_{\hat{i}}-\omega^{\hat{j}}{ }_{i} \wedge \mathbf{d}_{\nabla} \mathbf{e}_{\hat{j}}+\mathbf{d} \omega^{\hat{p}_{\hat{i}}} \mathbf{e}_{\hat{p}}-\omega^{\hat{p}}{ }_{\hat{i}} \wedge \mathbf{d}_{\nabla} \mathbf{e}_{\hat{p}} \\
& =\mathbf{d} \omega^{\hat{j}}{ }_{\hat{i}} \mathbf{e}_{\hat{j}}-\omega^{\hat{j}}{ }_{\hat{i}} \wedge\left(\omega^{\hat{k}} \mathbf{e}_{\hat{j}}+\omega^{\hat{p}}{ }_{\hat{j}} \mathbf{e}_{\hat{p}}\right)+\mathbf{d} \omega^{\hat{p}}{ }_{\hat{i}} \mathbf{e}_{\hat{p}}-\omega^{\hat{p}}{ }_{\hat{i}} \wedge\left(\omega^{\hat{j}}{ }_{\hat{p}} \mathbf{e}_{\hat{j}}+\omega^{\hat{q}}{ }_{\hat{p}} \mathbf{e}_{\hat{q}}\right) \\
& =\mathbf{d} \omega^{\hat{j}_{\hat{i}}} \mathbf{e}_{\hat{j}}+\omega^{\hat{k}}{ }_{\hat{j}} \wedge \omega^{\hat{j}} \hat{i}_{\hat{i}} \mathbf{e}_{\hat{k}}+\omega^{\hat{p}}{ }_{\hat{j}} \wedge \omega^{\hat{j}} \mathbf{e}_{\hat{i}}+\mathbf{d} \omega^{\hat{p}_{\hat{i}}} \mathbf{e}_{\hat{p}}+\omega^{\hat{j}}{ }_{\hat{p}} \wedge \omega^{\hat{p}_{\hat{i}}} \mathbf{e}_{\hat{j}}+\omega^{\hat{q}}{ }_{\hat{p}} \wedge \omega^{\hat{p}_{\hat{i}}} \mathbf{e}_{\hat{q}}
\end{aligned}
$$

$$
\begin{align*}
& =\overline{\mathcal{R}}^{\hat{j}_{i}} \mathbf{e}_{\hat{j}}+\overline{\mathcal{R}}^{\hat{p}} \hat{\mathbf{c}}_{\hat{p}} \mathbf{e}_{\hat{p}}=\overline{\mathcal{R}}^{\hat{a}}{ }_{\hat{i}} \overline{\mathbf{e}}_{\hat{a}} \tag{370}
\end{align*}
$$

and

$$
\begin{align*}
& \mathbf{d}_{\nabla}^{2} \mathbf{e}_{\hat{p}}=\mathbf{d} \omega_{\hat{p}}^{\hat{i}} \mathbf{e}_{\hat{i}}-\omega^{\hat{i}} \hat{p}_{\hat{p}} \wedge \mathbf{d}_{\nabla} \mathbf{e}_{\hat{i}}+\mathbf{d} \omega^{\hat{q}_{\hat{p}}} \hat{\mathbf{e}}_{\hat{q}}-\omega^{\hat{q}} \hat{p}_{\hat{p}} \wedge \mathbf{d}_{\nabla} \mathbf{e}_{\hat{q}} \\
& =\mathbf{d} \omega^{\hat{i}} \mathbf{e}_{\hat{p}}-\omega^{\hat{i}}{ }_{\hat{p}} \wedge\left(\omega^{\hat{j}}{ }_{i} \mathbf{e}_{\hat{j}}+\omega^{\hat{q}}{ }_{i} \mathbf{e}_{\hat{q}}\right)+\mathbf{d} \omega^{\hat{q}} \hat{p}_{\hat{p}}-\omega^{\hat{q}}{ }_{\hat{p}} \wedge\left(\omega^{\hat{i}}{ }_{\hat{q}} \mathbf{e}_{\hat{i}}+\omega^{\hat{r}}{ }_{\hat{q}} \mathbf{e}_{\hat{r}}\right) \\
& =\mathbf{d} \omega^{\hat{i}} \mathbf{e}_{\hat{p}}+\omega^{\hat{j}}{ }_{\hat{i}} \wedge \omega^{\hat{i}} \hat{\mathbf{r}}_{\hat{j}}+\omega^{\hat{q}} \hat{i}_{\hat{i}} \wedge \omega^{\hat{i}}{ }_{\hat{p}} \mathbf{e}_{\hat{q}}+\mathbf{d} \omega^{\hat{q}}{ }_{\hat{p}} \mathbf{e}_{\hat{q}}+\omega^{\hat{i}}{ }_{\hat{q}} \wedge \omega^{\hat{q}} \hat{\hat{p}}_{\hat{p}} \mathbf{e}_{\hat{i}}+\omega^{\hat{r}}{ }_{\hat{q}} \wedge \omega^{\hat{q}} \hat{p}_{\hat{p}} \hat{\mathbf{e}}_{\hat{r}} \\
& =\left(\mathbf{d} \omega^{\hat{i}}+\omega^{\hat{i}}{ }_{\hat{j}} \wedge \omega^{\hat{\hat{j}}}{ }_{\hat{p}}+\omega^{\hat{i}}{ }_{\hat{q}} \wedge \omega^{\hat{q}}{ }_{\hat{p}}\right) \mathbf{e}_{\hat{i}}+(\underbrace{\mathbf{d} \omega_{\hat{p}}^{\hat{q}}}_{\mathcal{R}^{\hat{q}}}{ }_{\hat{p}}+\omega^{\hat{\hat{r}}} \wedge \omega^{\hat{r}} \hat{p}_{\hat{p}}+\omega^{\hat{q}_{\hat{i}}} \wedge \omega^{\hat{i}}{ }_{\hat{p}}) \mathbf{e}_{\hat{q}} \\
& =\overline{\mathcal{R}}^{\hat{i}}{ }_{\hat{p}} \mathbf{e}_{\hat{i}}+\overline{\mathcal{R}}^{\hat{q}}{ }_{\hat{p}} \mathbf{e}_{\hat{q}}=\overline{\mathcal{R}}^{\hat{a}}{ }_{\hat{p}} \overline{\mathbf{e}}_{\hat{a}}, \tag{371}
\end{align*}
$$

respectively. According to the results above, we have the following equations:

$$
\left\{\begin{align*}
\text { Gauss equation: } & \overline{\mathcal{R}}^{\hat{j}_{\hat{i}}}=\mathcal{R}^{\hat{j}_{\hat{i}}}+\omega^{\hat{j}_{\hat{p}}} \wedge \omega^{\hat{p}_{\hat{i}}}, \tag{372a}\\
\text { Codazzi equation: } & \overline{\mathcal{R}}^{\hat{p}}{ }_{\hat{i}}=\mathbf{d} \omega^{\hat{p}_{\hat{i}}}+\omega^{\hat{p}}{ }_{\hat{j}} \wedge \omega^{\hat{j}_{\hat{i}}}+\omega^{\hat{p}}{ }_{\hat{q}} \wedge \omega^{\hat{q}_{\hat{i}}}, \\
\text { Ricci equation: } & \overline{\mathcal{R}}_{\hat{\hat{p}}}^{\hat{\hat{p}}}=\mathcal{R}^{\hat{q}}{ }_{\hat{p}}+\omega^{\hat{q}_{\hat{i}}} \wedge \omega_{\hat{p}}^{\hat{i}} .
\end{align*}\right.
$$

Subspace of $\mathbb{E}^{m} \quad$ We consider that a space \mathcal{M} is embedded in the flat space \mathbb{E}^{m}. We can chose the cartesian coordinate for \mathbb{E}^{m}, every component of the orthonormal frame $\left\{\overline{\mathbf{e}}_{\hat{a}}\right\}$ is related to the fixed cartesian frame by

$$
\left\{\begin{array}{l}
\overline{\mathbf{e}}_{\hat{i}}=a_{\hat{i}}^{j} \delta_{j}=a_{\hat{i}}^{j} \frac{\partial}{\partial x^{j}}, \quad \text { and } \quad \bar{\vartheta}^{i}=a_{j}^{\hat{i}} d x^{j} \quad(i=1,2, \ldots, n), \tag{373}\\
\overline{\mathbf{e}}_{\hat{p}}=a_{\hat{p}}{ }^{q} \delta_{q}=a_{\hat{p}}{ }^{q} \frac{\partial}{\partial x^{q}}, \quad \text { and } \quad \bar{\vartheta}^{\hat{p}}=a^{\hat{p}} d x^{q} \quad(p=n+1, \ldots, m),
\end{array}\right.
$$

where $a_{\hat{i}}{ }^{j}, a^{\hat{i}}{ }_{j} \in S O(m, \mathbb{R})$. Therefore, the differential of the frame on subspace \mathcal{M} with $\bar{\vartheta} \hat{p}=0$ is given by

$$
\left\{\begin{array}{c}
\mathbf{d}_{\nabla} \mathbf{p}=\vartheta^{\hat{i}} \otimes \mathbf{e}_{i}=d x^{i} \otimes \delta_{i}, \tag{374a}\\
\mathbf{d}_{\nabla} \overline{\mathbf{e}}_{\hat{a}}=\bar{\omega}_{\hat{a}}^{\hat{b}} \otimes \overline{\mathbf{e}}_{\hat{b}}=\bar{\Gamma}^{b}{ }_{a} \otimes \delta_{b},
\end{array}\right.
$$

and we can show that the torsion and curvature are vanished by using (374) in terms of cartesian frame, which gives the following equations for frame with torsion-free and curvature-free on \mathbb{E}^{m}

$$
\left\{\begin{align*}
\mathbf{d}_{\nabla}^{2} \mathbf{p} & =\overline{\mathcal{T}}^{\hat{i}} \mathbf{e}_{\hat{i}}=0, \tag{375a}\\
\mathbf{d}_{\nabla}^{2} \mathbf{e}_{\hat{i}} & =\overline{\mathcal{R}}^{\hat{a}} \overline{\mathbf{e}}_{\hat{a}}=0, \\
\mathbf{d}_{\nabla}^{2} \mathbf{e}_{\hat{p}} & =\overline{\mathcal{R}}^{\hat{a}}{ }_{\hat{p}} \overline{\mathbf{e}}_{\hat{a}}=0 .
\end{align*}\right.
$$

The equations (367) and (372) turn out to be

$$
\left\{\begin{array}{rlr}
\text { Torsion-free: } & \mathcal{T}^{\hat{i}}=\mathbf{d} \vartheta^{\hat{i}}+\omega^{\hat{i}}{ }_{\hat{j}} \wedge \vartheta^{\hat{j}}=0 \tag{376a}\\
\text { Gauss equation: } & \mathcal{R}^{\hat{j}_{\hat{i}}}=-\omega^{\hat{j}} \hat{p}_{\hat{p}} \wedge \omega^{\hat{p}_{\hat{i}}}=\omega^{\hat{p}_{\hat{j}}} \wedge \omega^{\hat{p}_{\hat{}}}, \\
\text { Codazzi equation: } & 0 & =\mathbf{d} \omega^{\hat{p}_{\hat{i}}}+\omega^{\hat{p}_{\hat{j}}} \wedge \omega^{\hat{j}}+\omega_{\hat{i}}^{p} \wedge \omega^{\hat{q}_{\hat{i}}} \\
\text { Ricci equation: } & \mathcal{R}^{\hat{q}_{\hat{p}}}=-\omega^{\hat{q}}{ }_{\hat{i}} \wedge \omega^{\hat{i}}{ }_{\hat{p}}=\omega^{\hat{q}} \hat{i}_{\hat{i}} \wedge \omega^{\hat{p}}{ }_{\hat{i}},
\end{array}\right.
$$

because all barred torsion and curvature 2-forms should be vanished in \mathbb{E}^{m}. According to (376a), we have torsion-free, it leads us to have Ricci rotation coefficients written as (316). From the consequence of (363), the Gauss equation (376b) is

$$
\begin{align*}
\mathcal{R}_{\hat{i}}^{\hat{j}_{\hat{i}}} & =\frac{1}{2} R^{\hat{j}_{\hat{k} \hat{l} \hat{l}}} \vartheta^{\hat{k}} \wedge \vartheta^{\hat{l}} \\
& =\left(h^{\hat{p}}{ }_{\hat{j} \hat{k}} \vartheta^{\hat{k}}\right) \wedge\left(h^{\hat{p}_{\hat{i}} \hat{l}} \vartheta^{\hat{l}}\right)=\frac{1}{2}\left(h^{\hat{p}} \hat{\mathrm{j}}_{\hat{k}} h^{\hat{p}} \hat{\hat{i} \hat{l}}-h^{\hat{p}} \hat{\mathrm{j}}_{\hat{j} l} h^{\hat{p}_{\hat{i} \hat{k}}}\right) \vartheta^{\hat{k}} \wedge \vartheta^{\hat{l}}, \tag{377}
\end{align*}
$$

i.e.,
or

The Codazzi equation (376c) becomes

$$
\left.\begin{array}{rl}
0 & =\mathbf{d}\left(h^{\hat{p}_{\hat{i}}^{\hat{j}}}\right. \\
\vartheta^{\hat{j}} \tag{380}
\end{array}\right)+\left(h^{\hat{p}}{ }_{\hat{j} \hat{k}} \vartheta^{\hat{k}}\right) \wedge \omega^{\hat{j}}+\omega_{\hat{i}}^{\hat{p}}{ }_{\hat{q}} \wedge\left(h^{\hat{q}} \hat{} \hat{\hat{j}}^{\vartheta^{\hat{j}}}\right) .
$$

The Ricci equation can be read as

$$
\begin{align*}
\mathcal{R}^{\hat{q}} \hat{p}_{\hat{p}} & =\frac{1}{2} R^{\hat{q}}{ }_{\hat{p} \hat{k}} \vartheta^{\hat{k}} \wedge \vartheta^{\hat{l}} \\
& =\left(h^{\hat{q}_{\hat{i} \hat{k}}} \vartheta^{\hat{k}}\right) \wedge\left(h^{\left.\hat{p}_{\hat{i} \hat{l}} \vartheta^{\hat{l}}\right)=\frac{1}{2}\left(h^{\hat{q}} \hat{\mathrm{i}}_{\hat{k}} h^{\hat{p}}{ }_{\hat{i} \hat{l}}-h^{\hat{q}} \hat{\mathrm{i}}_{\hat{i}} h^{\hat{p}_{\hat{i} \hat{k}}}\right) \vartheta^{\hat{k}} \wedge \vartheta^{\hat{l}},}\right. \tag{381}
\end{align*}
$$

i.e.,

$$
\begin{equation*}
R^{\hat{q}}{ }_{\hat{p} \hat{k} \hat{l}}=h^{\hat{q}_{\hat{i} \hat{k}}} h^{\hat{p}}{ }_{\hat{i} \hat{l}}-h^{\hat{\hat{}}}{ }_{\hat{i} l} h^{\hat{p}} \hat{i}_{\hat{i} \hat{k}}, \tag{382}
\end{equation*}
$$

or

Example (Hypersurface of \mathbb{E}^{3}). If we consider \mathcal{M} and $\overline{\mathcal{M}}$ to be \mathcal{M}^{2} and \mathbb{E}^{3} and $\frac{\partial}{\partial x^{3}}$ is assume to be aligned to the normal vector \mathbf{n} of \mathcal{M}, we have

$$
\left\{\begin{array}{lll}
\overline{\mathbf{e}}_{\hat{i}}=a_{\hat{i}}^{j} \delta_{j}=a_{\hat{i}}^{j} \frac{\partial}{\partial x^{j}}, \quad \text { and } \quad \bar{\vartheta}^{i}=a^{\hat{i}}{ }_{j} d x^{j} \quad\left(i, j=1,2 \text { and } x^{1}=x, x^{2}=y\right), \tag{384a}\\
\overline{\mathbf{e}}_{3}=a_{\hat{3}}{ }^{3} \delta_{3}=a_{\hat{3}}{ }^{3} \frac{\partial}{\partial x^{3}}, \quad \text { and } \quad \bar{\vartheta}^{\hat{3}}=a^{\hat{3}}{ }_{3} d x^{3} \quad\left(x^{p}=x^{3}=z\right) .
\end{array}\right.
$$

Due to the fixed condition $p=n+1=m=3$ ，it is impossible to have $p \neq q$ ，which leads to the results for hypersuface with $\bar{\vartheta}^{\hat{3}}=0$ of

$$
\begin{equation*}
\left.\mathcal{R}^{\hat{q}}{ }_{\hat{p}}=0 \quad \text { (for hypersuface }\right) \tag{385}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{\hat{q}}^{\hat{p}}=0 \quad \text { (for hypersuface) } . \tag{386}
\end{equation*}
$$

We can identify $h^{\hat{3}}{ }_{\hat{i} \hat{j}}$ to be $b_{\hat{i} \hat{j}}$ which is the extrinsic curvature of \mathcal{M} ．The corresponding component equations of（378）and（380）are

$$
\left\{\begin{align*}
R_{\hat{\hat{i} \hat{k} \hat{l}}} & =b_{\hat{j} \hat{k}} b_{\hat{i} \hat{l}}-b_{\hat{\jmath} \hat{\jmath}} b_{\hat{i} \hat{k}}, \tag{387a}\\
0 & =d b_{\hat{i} \hat{j}} \wedge \vartheta^{\hat{j}}+b_{\hat{i} \hat{j}} \mathbf{d} \vartheta^{\hat{j}}+b_{\hat{j} \hat{k}} \omega^{\hat{j}_{\hat{i}}} \vartheta^{\hat{k}} \wedge \vartheta^{\hat{l}} .
\end{align*}\right.
$$

If we use the holonomic frame with coordinate $\left\{u^{i}\right\}$ on \mathcal{M} ，we have

$$
\begin{equation*}
\vartheta^{\hat{i}}=a^{\hat{i}}{ }_{j} d x^{j}=a^{\hat{i}}{ }_{j} \frac{\partial x^{j}}{\partial u^{k}} d u^{k}=d u^{i} \quad \Longrightarrow \quad e^{\hat{i}}{ }_{k}:=a^{\hat{i}}{ }_{j} \frac{\partial x^{j}}{\partial u^{k}}=\delta^{\hat{i}}{ }_{k} \tag{388}
\end{equation*}
$$

such that $\mathbf{d} \vartheta^{\hat{i}}=\mathbf{d} d u^{i}=0\left(\right.$ or $\left.c^{\hat{i}}{ }_{\hat{j} \hat{k}}=0\right)$ and $\omega^{\hat{j}}{ }_{\hat{i}}=\Gamma^{j}{ }_{i}$ ，therefore（387a）and（387b）becomes

$$
\begin{equation*}
R^{j}{ }_{i k l}=b_{j k} b_{i l}-b_{j l} b_{i k} \tag{389}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\partial_{k} b_{i j}\right) d u^{k} \wedge d u^{j}+\left(b_{j k} \Gamma^{j}{ }_{i l}\right) d u^{k} \wedge d u^{l}=0 \quad \Longrightarrow \quad \partial_{k} b_{i j}-\partial_{j} b_{i k}+b_{l k} \Gamma^{l}{ }_{i j}-b_{l j} \Gamma_{i k}^{l}=0, \tag{390}
\end{equation*}
$$

which have been given by（231）and（232）respectively．

Acknowledgments

Ling－Wei Luo（LWL）would like to thank Prof．Jen－Chi Lee（NCTU）who encurages LWL and gives an opportunity for LWL to give a lecture on elementary differential geometry for both undergraduate and dergraduate students in NCTU．LWL also would like to thans Mr．Shang－Yu Chien who is a PhD student in National Tsing Hua University to check and discuss the contents of this lecture note．The work was supported by Ministry of Science and Technology（MoST－107－2119－M－007－013－MY3）and Academia Sinica Career Development Award Program（AS－CDA－105－M06）．

References

［1］小林昭七：曲線と曲面の微分幾何，裳華房， 1995.
［2］小林昭七：接続の微分幾何とゲージ理論，裳華房， 1989.
［3］陳維桓：微分幾何，北京大學出版社， 2006.
[4] Élie Cartan, On Manifolds with an Affine Connection and the Theory of General Relativity, Bibliopolis, Napoli, Italy, 1986.
[5] Élie Cartan, Riemannian Geometry in an Orthogonal Frame, World Scientific Publishing Co., Singapore, 2001.
[6] S. S. Chern, Weihuan Chen, K. S. Lam, Lectures on Differential Geometry, World Scientific Publishing Co., Singapore, 1999.
[7] Manfredo P.do Carmo, Differential Forms and Applications, Springer, New York, 1998.
[8] Richard L. Faber, Differential Geometry and Relativity Theory: An Introduction, CRC Press, Boca Raton, FL, 1983.
[9] Harley Flanders, Differential Forms with Applications to the Physical Sciences, Dover Publications, New York, 1989.
[10] Shoshichi Kobayashi, Katsumi Nomizu, Foundations of Differential Geometry, Vol. I, John Wiley \& Sons, New York, 1963.
[11] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, Freeman, SanFrancisco, 1973.
[12] J. A. Schouten Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications, Springer, Berlin, 1954.

[^0]: *Electronic address: 1wluo@gate.sinica.edu.tw

